To the content
3 . 2019

Immunostimulators of muramylpeptide nature in the treatment and prevention of infectious-infl ammatory processes

Abstract

With the introduction of a pathogenic microbe, the development of an infectious disease largely depends on the innate immunity of the entrance gate of the infection, which in most cases are the mucous membranes of the respiratory, gastrointestinal and Uro-genital tract. Not only classical cells of the immune system, but also epithelial cells of the mucous membranes take part in the creation of anti-infectious protection of the mucous membranes. Therefore, the immunostimulating effect of drugs should be directed not only to the cells of the immune system, but also to the barrier epithelial layer, which will quickly and effectively eliminate the pathogen. The ability to stimulate both immune and non-immune component of anti-infectious protection have muramilpeptide preparations of nature and, above all, Lycopid®, which has shown high efficiency in the treatment and prevention of a number of diseases, including respiratory infections.

Keywords:muramilpeptides; MDP; innate immunity; infectious diseases

Received 21.02.2019. Accepted 16.04.2019.

For citation: For citation: Pinegin B.V., Pashchenkov M.V. Immunostimulators of muramylpeptide nature in the treatment and prevention of infectious-inflammatory processes. Immunologiya. 2019; 40 (3): 65-71. doi: 10.24411/0206-4952-2019-13007. (in Russian)

Acknowledgments. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

References

1. Ivanov V.T., Khaitov R.M., Andronova T.M., Pinegin B.V Likopid (glucosaminilmuramilpentapeptide) - new domestic highly effective immunomodulator for treatment and prophylaxis of diseases associated with secondary immunological insufficiency. Immunologiya. 1996; 17 (2): 4-6. (in Russian)

2. Pinegin B.V., Andronov T.M. Some theoretical and practical issues of clinical application of immunomodulator Likopid. Immunologiya. 1998; 19: 60-3. (in Russian)

3. Pinegin B.V, Andronova T.M., Karsonova M.I. muramilpeptide Preparations - immunotropic drugs of new generation. In: Likopid in the Complex Treatment and Prevention of Immunodeficiency States. Moscow, 2005: 19-36. (in Russian)

4. Ellouz F., Adam A., Ciorbaru R., Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 1974; 59 (4): 1317-25.

5. Lederer E. New developments in the field of synthetic muramyl peptides, especially as adjuvants for synthetic vaccines. Drugs Exp. Clin. Res. 1986; 12 (6-7): 429-40.

6. Clarke T.B., Davis K.M., Lysenko E.S., Zhou A.Y., et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 2010; 16 (2): 228-31. doi: 10.1038/nm.2087.

7. Farkas L., Stoelcker B., Jentsch N., Heitzer S., et al. Muramyldipeptide modulates CXCL-8 release of BEAS-2B cells via NOD2. Scand. J. Immunol. 2008; 68 (3): 315-22. doi: 10.1111/j.1365-3083.2008.02145.x.

8. Al Nabhani Z., Dietrich G., Hugot J.P., Barreau F. Nod2: The intestinal gate keeper. PLoS Pathog. 2017: 13 (3): e1006177. doi: 10.1371/journal.ppat.1006177.

9. Girardin S.E., Tournebize R., Mavris M., Page A.L., et al. CARD4/ Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2001; 2: 736-42.

10. Inohara N., Koseki T., del Peso L., Hu Y., et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 1999; 274: 14 560-7.

11. Girardin S.E., Boneca I.G., Carneiro L.A., Antignac A., et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003; 300 (5625): 1584-7.

12. Morre S.A., Ouburg S., Klinkenberg-Knol E.C., Mulder C.J., et al. The true ligand of the NOD2 receptor is peptidoglycan instead of lipopolysaccharide: a schematic representation of ligand-receptor interactions and NF-kappa B activation. Gastroenterology. 2004; 126: 371-2.

13. Meshcheryakova E., Makarov E., Philpott D., Andronova T., et al. Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides. Vaccine. 2007; 25 (23): 4515-20.

14. Pashenkov M.V., Balyasova L.S., Dagil Y.A., Pinegin B.V The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor. J. Immunol. 2017; 198 (4): 1638-48. doi: 10.4049/jimmunol.1600467.

15. Chamaillard M., Hashimoto M., Horie Y., Masumoto J., et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 2003. 4 (7): 702-7.

16. Ogura Y., Inohara N., Benito A., Chen F.F., et al. Nod2, a Nod1/ Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J. Biol. Chem. 2001; 276 (7): 4812-8.

17. Lv Q., Yang M., Liu X., Zhou L., et al. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells. Molecules. 2012; 17 (4): 3599-608. doi: 10.3390/molecules17043599.

18. Qiu H.N., Wong C.K., Chu I.M., Hu S., et al. Muramyl dipeptide mediated activation of human bronchial epithelial cells interacting with basophils: a novel mechanism of airway inflammation. Clin. Exp. Immunol. 2013; 172 (1): 81-94. doi: 10.1111/cei.12031.

19. Maurya C.K., Arha D., Rai A.K., Kumar S.K., et al. NOD2 activation induces oxidative stress contributing to mitochondrial dysfunction and insulin resistance in skeletal muscle cells. Free Radic. Biol. Med. 2015; 89: 158-69. doi: 10.1016/j.freeradbiomed.2015.07.154.

20. Di Stefano A., Ricciardolo F.L.M., Caramori G., Adcock I.M., et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur. Respir J. 2017. 49 (5). pii: 1602006. doi: 10.1183/13993003.02006-2016.

21. Boyle J.P., Parkhouse R., Monie T.P. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol. 2014; 4 (12). pii: 140178. doi: 10.1098/rsob.140178.

22. Zhong Y., Kinio A., Saleh M. Functions of NOD-like receptors in human diseases. Front. Immunol. 2013; 4: 333. doi: 10.3389/fimmu.2013.00333.

23. Sabbah A., Chang T.H., Harnack R., Frohlich V, et al. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 2009; 10 (10): 1073-80. doi: 10.1038/ni.1782.

24. Travassos L.H., Carneiro L.A., Ramjeet M., Hussey S., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010; 11 (1). 55-62. doi: 10.1038/ni.1823.

25. Le Bel M., Gosselin J. Leukotriene B4 enhances NOD2-dependent innate response against influenza virus infection. PLoS One. 2015; 10 (10): e0139856. doi: 10.1371/journal.pone.0139856.

26. Lipinski S., Till A., Sina C., Arlt A., et al. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J. Cell Sci. 2009; 122 (Pt 19): 3522-30. doi: 10.1242/jcs.050690.

27. Coulombe F., Fiola S., Akira S., Cormier Y., et al. Muramyl dipeptide induces NOD2-dependent Ly6C(high) monocyte recruitment to the lungs and protects against influenza virus infection. PLoS One. 2012; 7 (5): e36734. doi: 10.1371/journal.pone.0036734.

28. Anderson P.M. Immune therapy for sarcomas. Adv. Exp. Med. Biol. 2017; 995: 127-40. doi: 10.1007/978-3-319-53156-4_6.

29. Namba K., Yamamura E., Nitanai H., Otani T., et al. Romurtide, a synthetic muramyl dipeptide derivative, promotes egakaryocytopoiesis through stimulation of cytokine production in nonhuman primates with myelosuppression. Vaccine. 1997; 15 (4): 405-13.

30. Kiryukhin A.V., Parfenova N.A. Maksimova T.A., et al. Optimize the treatment of frequently and chronically ill children: immunocorrection Likopida. In: Likopid in the Complex Treatment and Prevention of Immunodeficiency States. Moscow, 2005: 57-64. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»