Results of clinical trials phases I and II of MIR 19®

Abstract

Introduction. In connection with the threat of coronavirus infection, increased the need for the development of fundamentally new antiviral drugs with increased efficiency and availability. One of the promising directions in the development of such drugs is the use of inhibitors of viral reproduction based on small interfering RNA (siRNA).

Aim – to study the safety of MIR 19® (siCoV/KK46) in single and multiple doses, as well as to study the efficacy and choice of dosage of MIR 19® in the treatment of hospitalized patients with infection caused by SARS-CoV-2 (COVID-19) who do not require treatment in the intensive care unit.

Material and methods. Phase I clinical trial, the safety of MIR 19® was studied for single and multiple administration. As safety criteria, the incidence of any adverse events, the incidence of serious adverse events according to complaints, the results of a physical examination, the results of assessing heart rate and blood pressure, respiratory rate and body temperature, as well as laboratory monitoring data – indicators of clinical and biochemical blood tests, general urine analysis. Also, for the registration and monitoring of AEs, the instrumental research methods – ECG and spirography were used. An open-label, randomized, controlled, multicentre, phase II study (NCT05184127) was then conducted to evaluate the safety and efficacy of inhaled MIR 19® (3.7 and 11.1 mg/day: low and high dose, respectively) compared with standard treatment (group of comparison) in patients with coronavirus infection / COVID-19 who did not require mechanical ventilation at the time of inclusion in the study (n = 52 for each group).

Results. Based on the results of the phase I clinical trial, it can be concluded that the single and multiple administration of the MIR 19® preparation is safe in healthy volunteers. Phase II clinical trials showed that patients in the low-dose group achieved the primary endpoint of simultaneously achieving fever reduction, respiratory rate normalization, cough reduction, and blood oxygen saturation > 95 % within 48 h, significantly earlier (median 6 days) than patients in the group of comparison (median 8 days). In the high dose group, no greater clinical efficacy was observed in relation to the group of comparison. None of adverse events were associated with MIR 19®.

Conclusion. MIR 19®, an etiotropic drug specifically suppressing SARS-CoV-2 replication, is safe with single and multiple use, is well tolerated and significantly reduces the time to clinical improvement in patients hospitalized with moderate COVID-19, compared with standard therapy in a randomized controlled trial. MIR 19® is registered (registration certificate LP-007720), it is included in the Temporary Methodological Recommendations of the Ministry of Health of the Russian Federation «Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)» and is actively used in clinical practice.

Keywords:SARS-CoV-2; COVID-19; miRNA; MIR 19®; siCoV/KK46; clinical research; safety; efficiency

For citation: Khaitov M.R., Nikonova A.A., Kofiadi I.A., Shilovsky I.P., Smirnov V.V., Elisyutina O.G., Gudima G.O., Maerle A.V., Shatilov A.A., Shatilova A.V., Andreev S.M., Sergeev I.V., Trofimov D.Yu., Latysheva T.V., Ilyina N.I., Martynov A.I., Rabdano S.O., Ruzanova E.A., Savelyev N.S., Pletyukhina Yu.V., Safi A.S., Ratnikov V.A., Gorelov V.P., Kashchenko V.A., Kucherenko N.G., Umarova I.A., Moskaleva S.S., Fabrichnikov S.V., Zuev O.V., Pavlov N.B., Kryuchko D.S., Berzin I.A., Goryachev D.V., Merkulov V.A., Shipulin G.A., Yudin S.M., Trukhin V.P., Valenta R., Skvortsova V.I. Results of clinical trials phases I and II of MIR 19®. Immunologiya. 2023; 44 (3): 291–316. DOI: https://doi.org/10.33029/1816-2134-2023-44-3-291-316 (in Russian)

Conflict of interests. The authors declare no conflict of interests.

Funding. The study was funded by Federal Medical-Biological Agency.

Authors’ contribution. Research concept and methodology – Khaitov M.R., Valenta R., Shilovsky I.I., Kofiadi I.A., Smirnov V.V., Martynov A.I., Berzin I.A., Trukhin V.P., Skvortsova V.I.; conducting the study – Elisyutina O.G., Maerle A.V., Shatilov A.A., Shatilova A.V., Andreev S.M., Sergeev I.V., Trofimov D.Yu., Latysheva T.V., Ilyina N.I., Rabdano S.O., Ruzanova E.A., Savelev N.S., Pletyukhina Yu.V., Safi A.S., Ratnikov V.A., Gorelov V.P., Kashchenko V.A., Kucherenko N.G., Umarova I.A., Moskaleva S.S., Fabrichnikov S.V., Zuev O.V., Pavlov N.B., Kryuchko D.S., Goryachev D.V., Merkulov V.A., Shipulin G.A., Yudin S.M. data processing – Nikonova A.A., Kofiadi I.A., Shilovsky I.P., Gudima G.O.; writing and editing the article – Khaitov M.R., Nikonova A.A., Kofiadi I.A., Smirnov V.V., Gudima G.O.

References

1. Holgate S.T. Accelerating the transition of clinical science to translational medicine. Clin Sci (Lond). 2021; 135 (20): 2423–8. DOI: https://doi.org/10.1042/CS20210846

2. Heinz F.X., Stiasny K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 2021; 6 (1): 104. DOI: https://doi.org/10.1038/s41541-021-00369-6

3. Rodriguez-Coira J., Sokolowska M. SARS-CoV-2 candidate vaccines – composition, mechanisms of action and stages of clinical development. Allergy. 2021; 76 (6): 1922–4. DOI: https://doi.org/10.1111/all.14714

4. Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020; 75 (7): 1564–81. DOI: https://doi.org/10.1111/all.14364

5. Gudima G., Kofiadi I., Shilovskiy I., Kudlay D., Khaitov M. Antiviral therapy of COVID-19. Int J Mol Sciences. 2023; 24 (10): 8867. DOI: https://doi.org/10.3390/ijms24108867

6. Wang L., Cheng G. Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa. J Med Virol. 2022; 94 (4): 1728–33. DOI: https://doi.org/10.1002/jmv.27516

7. Planas D., Saunders N., Maes P., Guivel-Benhassine F., Planchais C., Buchrieser J., Bolland W.H., Porrot F., Staropoli I., Lemoine F., Péré H., Veyer D., Puech J., Rodary J., Baele G., Dellicour S., Raymenants J., Gorissen S., Geenen C., Vanmechelen B., Wawina-Bokalanga T., Martí-Carreras J., Cuypers L., Sève A., Hocqueloux L., Prazuck T., Rey F.A, Simon-Loriere E., Bruel T., Mouquet H., André E., Schwartz O. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022; 602 (7898): 671–5. DOI: https://doi.org/10.1038/s41586-021-04389-z

8. Rössler A., Riepler L., Bante D., von Laer D., Kimpel J. SARS-CoV-2 omicron variant neutralization in serum from vaccinated and convalescent persons. N Engl J Med. 2022; 386 (7): 698–700. DOI: https://doi.org/10.1056/NEJMc2119236

9. Gattinger P., Tulaeva I., Borochova K., Kratzer B., Trapin D., Kropfmüller A., Pickl W.F., Valenta R. Omicron: A SARS-CoV-2 variant of real concern. Allergy. 2022; 77 (5): 1616–20. DOI: https://doi.org/10.1111/all.15264

10. Touret F., Baronti C., Bouzidi H.S., de Lamballerie X. In vitro evaluation of therapeutic antibodies against a SARS-CoV-2 Omicron B.1.1.529 isolate. Sci Rep. 2022; 12 (1): 4683. DOI: https://doi.org/10.1038/s41598-022-08559-5

11. Bappy S.S., Shibly A.Z., Sultana S., Mohiuddin A.K.M., Kabir Y. Designing potential siRNA molecule for the nucleocapsid(N) gene silencing of different SARS-CoV-2 strains of Bangladesh: Computational approach. Comput Biol Chem. 2021; 92: 107486. DOI: https://doi.org/10.1016/j.compbiolchem.2021.107486

12. Tada T., Zhou H., Dcosta B.M., Samanovic M.I., Chivukula V., Herati R.S., Hubbard S.R., Mulligan M.J., Landau N.R. Increased resistance of SARS-CoV-2 Omicron variant to neutralization by vaccineelicited and therapeutic antibodies. EBioMedicine. 2022; 78: 103944. DOI: https://doi.org/10.1016/j.ebiom.2022.103944

13. Monk P.D., Marsden R.J., Tear V.J., Brookes J., Batten T.N., Mankowski M., Gabbay F.J., Davies D.E., Holgate S.T., Ho L.P., Clark T., Djukanovic R., Wilkinson T.M.A.; Inhaled Interferon Beta COVID-19 Study Group. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021; 9 (2): 196–206. DOI: https://doi.org/10.1016/S2213-2600(20)30511-7

14. Feldmann M., Maini R.N., Woody J.N., Holgate S.T., Winter G., Rowland M., Richards D., Hussell T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020; 395 (10234): 1407–9. DOI: https://doi.org/10.1016/S0140-6736(20)30858-8

15. Takashita E., Kinoshita N., Yamayoshi S., Sakai-Tagawa Y., Fujisaki S., Ito M., Iwatsuki-Horimoto K., Halfmann P., Watanabe S., Maeda K., Imai M., Mitsuya H., Ohmagari N., Takeda M., Hasegawa H., Kawaoka Y. Efficacy of antiviral agents against the SARS-CoV-2 omicron subvariant BA.2. N Engl J Med. 2022; 386 (15): 1475–7. DOI: https://doi.org/10.1056/NEJMc2201933

16. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev Med Virol. 2018; 28 (4): e1976. DOI: https://doi.org/10.1002/rmv.1976

17. Lam J.K., Chow M.Y., Zhang Y., Leung S.W. siRNA Versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015; 4 (9): e252. DOI: https://doi.org/10.1038/mtna.2015.23

18. Ahmadzada T., Reid G., McKenzie D.R. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev. 2018; 10 (1): 69–86. DOI: https://doi.org/10.1007/s12551-017-0392-1

19. Aigner A. Perspectives, issues and solutions in RNAi therapy: the expected and the less expected. Nanomedicine (Lond). 2019; 14 (21): 2777–82. DOI: https://doi.org/10.2217/nnm-2019-0321

20. Zhang M.M., Bahal R., Rasmussen T.P., Manautou J.E., Zhong X.B. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol. 2021; 189: 114432. DOI: https://doi.org/10.1016/j.bcp.2021.114432

21. Khaitov M., Nikonova A., Shilovskiy I., Kozhikhova K., Kofiadi I., Vishnyakova L., Nikolsky A., Gattinger P., Kovchina V., Barvinskaya E., Yumashev K., Smirnov V., Maerle A., Kozlov I., Shatilov A., Timofeeva A., Andreev S., Koloskova O., Kuznetsova N., Vasina D., Nikiforova M., Rybalkin S., Sergeev I., Trofimov D., Martynov A., Berzin I., Gushchin V., Kovalchuk A., Borisevich S., Valenta R., Khaitov R., Skvortsova V. Silen­cing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021; 76 (9): 2840–54. DOI: https://doi.org/10.1111/all.14850

22. Khaitov M.R., Nikonova A.A., Shilovskiy I.P., Kozhikhova K.V., Kofiadi I.A., Gudima G.O., Vishnyakova L.I., Nikolskii A.A., Kovchina V.I., Timotievich E.D., Yumashev K.V., Smirnov V.V., Maerle A.V., Kozlov I.B., Shatilov A.A., Shatilova A.V., Andreev S.M., Koloskova O.O., Kuznetsova N.A., Vasina D.V., Nikiforova M.A., Rybalkin S.P., Sergeev I.V., Trofimov D.Y., Martynov A.I., Berzin I.A., Gushchin V.A., Kovalchuk A.V., Borisevich S.V., Skvortsova V.I. MIR 19 – world first specific antiviral drug for COVID-19 treatment. Development and preclinical studies. Immunologiya. 2023; 44 (3): 270–290. DOI: https://doi.org/10.33029/0206-4952-2023-44-3-270-290 (in Russian)

23. Ambike S., Cheng C.C., Feuerherd M., Velkov S., Baldassi D., Afridi S.Q., Porras-Gonzalez D., Wei X., Hagen P., Kneidinger N., Stoleriu M.G., Grass V., Burgstaller G., Pichlmair A., Merkel O.M., Ko C., Michler T. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res. 2022; 50 (1): 333–49. DOI: https://doi.org/10.1093/nar/gkab1248

24. Chang Y.C., Yang C.F., Chen Y.F., Yang C.C., Chou Y.L., Chou H.W., Chang T.Y., Chao T.L., Hsu S.C., Ieong S.M., Tsai Y.M., Liu P.C., Chin Y.F., Fang J.T., Kao H.C., Lu H.Y., Chang J.Y., Weng R.S., Tu Q.W., Chang F.Y., Huang K.Y., Lee T.Y., Chang S.Y., Yang P.C. A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant. EMBO Mol Med. 2022; 14 (4): e15298. DOI: https://doi.org/10.15252/emmm.202115298

25. Tolksdorf B., Nie C., Niemeyer D., Röhrs V., Berg J., Lauster D., Adler J.M., Haag R., Trimpert J., Kaufer B., Drosten C., Kurreck J. Inhibition of SARS-CoV-2 Replication by a small interfering RNA targeting the leader sequence. Viruses. 2021; 13 (10): 2030. DOI: https://doi.org/10.3390/v13102030

26. Adverse drug reaction probability scale (Naranjo) in drug induced liver injury. In: LiverTox: clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2019, May 4. PMID: 31689026.

27. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA. 2020; 323 (13): 123–942. DOI: https://doi.org/10.1001/jama.2020.2648

28. Gandhi R.T., Lynch J.B., Del Rio C. Mild or moderate COVID-19. N Engl J Med. 2020; 383 (18): 1757–66. DOI: https://doi.org/10.1056/NEJMcp2009249

29. Lamontagne F., Stegemann M., Agarwal A., Agoritsas T., Siemieniuk R., Rochwerg B., Bartoszko J., Askie L., Macdonald H., Al-Maslamani M., Amin W., Da Silva A.R.A., Barragan F.A.J., Bausch F.J., Burhan E., Cecconi M., Chacko B., Chanda D., Dat V.Q., Du B., Geduld H., Gee P., Haider M., Nerina H., Hashimi M., Jehan F., Hui D., Hunt B.J., Ismail M., Kabra S., Kanda S., Kawano-Dourado L., Kim YJ., Kissoon N., Krishna S., Kwizera A., Lisboa T., Leo Y.S., Mahaka I., Hela M., Migliori GB., Mino G., Nsutebu E., Pshenichnaya N., Qadir N., Ranganathan S.S., Sabzwari S., Sarin R., Shankar-Hari M., Sharland M., Shen Y., Souza J.P., Tshokey T., Ugarte S., Uyeki T., Venkatapuram S., Wachinou A.P., Wijewickrama A., Vuyiseka D., Preller J., Brignardello-Petersen R., Kum E., Qasim A., Zeraatkar D., Owen A., Guyatt G., Lytvyn L., Jacobs M., Vandvik P.O., Diaz J. A living WHO guideline on drugs to prevent COVID-19. BMJ. 2021; 372: n526. DOI: https://doi.org/10.1136/bmj.n526

30. Vetter P., Vu D.L., L’Huillier A.G., Schibler M., Kaiser L., Jacquerioz F. Clinical features of COVID-19. BMJ. 2020; 369: m1470. DOI: https://doi.org/10.1136/bmj.m1470

31. Jin J.M., Bai P., He W., Wu F., Liu X.F., Han D.M., Liu S., Yang J.K. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020; 8: 152. DOI: https://doi.org/10.3389/fpubh.2020.00152

32. Gao M., Piernas C., Astbury N.M., Hippisley-Cox J., O’Rahilly S., Aveyard P., Jebb S.A. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021; 9 (6): 350–9. DOI: https://doi.org/10.1016/S2213-8587(21)00089-9

33. Bigdelou B., Sepand M.R., Najafikhoshnoo S., Negrete J.A.T., Sharaf M., Ho J.Q., Sullivan I., Chauhan P., Etter M., Shekarian T., Liang O., Hutter G., Esfandiarpour R., Zanganeh S. COVID-19 and pre­existing comorbidities: risks, synergies, and clinical outcomes. Front Immunol. 2022; 13: 890517. DOI: https://doi.org/10.3389/fimmu.2022.890517

34. Tuttolomondo M., Casella C., Hansen P.L., Polo E., Herda L.M., Dawson K.A., Ditzel H.J., Mollenhauer J. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery. Mol Ther Nucleic Acids. 2017; 8: 264–76. DOI: https://doi.org/10.1016/j.omtn.2017.06.020

35. Firth A.E., Brierley I. Non-canonical translation in RNA viruses. J Gen Virol. 2012; 93 (Pt 7): 1385–409. DOI: https://doi.org/10.1099/vir.0.042499-0

36. Susser S., Welsch C., Wang Y., Zettler M., Domingues F.S., Ka­rey U., Hughes E., Ralston R., Tong X., Herrmann E., Zeuzem S., Sarrazin C. Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus-infected patients. Hepatology. 2009; 50 (6): 1709–18. DOI: https://doi.org/10.1002/hep.23192

37. Moyle G. Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity. Clin Ther. 2000; 22 (8): 911–36; discussion 898. DOI: https://doi.org/10.1016/S0149-2918(00)80064-8

38. Khaitov M., Nikonova A., Kofiadi I., Shilovskiy I., Smirnov V., Elisytina O., Maerle A., Shatilov A., Shatilova A., Andreev S., Sergeev I., Trofimov D., Latysheva T., Ilyna N., Martynov A., Rabdano S., Ruzanova E., Savelev N., Pletiukhina I., Safi A., Ratnikov V., Gorelov V., Kaschenko V., Kucherenko N., Umarova I., Moskaleva S., Fabrichnikov S., Zuev O., Pavlov N., Kruchko D., Berzin I., Goryachev D., Merkulov V., Shipulin G., Udin S., Trukhin V., Valenta R., Skvortsova V. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023; 00: 1–15. DOI: https://doi.org/10.1111/all.15663

39. Akimkin V.G., Popova A.Yu., Khafizov K.F., Dubodelov D.V., Ugleva S.V., Semenenko T.A., Ploskireva A.A., Gorelov A.V., Pshenichnaya N.Yu., Ezhlova E.B., Letyushev A.N., Demina Yu.V., Kutyrev V.V., Maksyutov R.A., Govorun V.M., Dyatlov I.A., Totolyan A.R., Kulichenko A.N., Balakhonov S.V., Rudakov N.V., Troczenko O.E., Noskov A.K., Zajczeva N.N., Toporkov A.V., Lioznov D.A., Andreeva E.E., Mikailova O.M., Komarov A.G., Ananev V.Yu., Moldovanov V.V., Logunov D.Yu., Gushhin V.A., Dedkov V.G., Cherkashina A.S., Kuzin S.N., Tivanova E.V., Kondrasheva L.Yu., Saenko V.V., Selezov S.Yu., Gasanov G.A., Svanadze N.Kh., Glazov M.B., Ostroushko A.A., Mironov K.O., Esman A.S., Osina N.A., Bodnev S.A., Komissarov A.B., Danilenko D.М., Bogun A.G., Skryabin Yu.P., Lopatovskaya K.V., Shtrek S.V., Volynkina A.S., Gladkikh A.S., Kotova V.O., Vodopyanov A.S., Novikova N.A., Speranskaya A.S., Samojlov A.E., Neverov A.D., Shpak I.M. COVID-19: evolution of the pandemic in Russia. Report II: dynamics of the circulation of SARS-CoV-2 genetic variants. Journal of microbiology, epidemiology and immunobiology [Zhurnal mikrobiologii, èpidemiologii i immunobiologii]. 2022; 99 (4): 381–96. DOI: https://doi.org/10.36233/0372-9311-295 (in Russian)

40. Challenger J.D., Foo C.Y., Wu Y., Yan A.W.C., Marjaneh M.M., Liew F., Thwaites R.S., Okell L.C., Cunnington A.J. Modelling upper res­piratory viral load dynamics of SARS-CoV-2. BMC Med. 2022; 20 (1): 25. DOI: https://doi.org/10.1186/s12916-021-02220-0

41. Al Bayat S., Mundodan J., Hasnain S., Sallam M., Khogali H., Ali D., Alateeg S., Osama M., Elberdiny A., Al-Romaihi H., Al-Thani M.H.J. Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among close contacts? J Infect Public Health. 2021; 14 (9): 1201–5. DOI: https://doi.org/10.1016/j.jiph.2021.08.013

42. Accorsi E.K., Britton A., Fleming-Dutra K.E, Smith Z.R., Shang N., Derado G., Miller J., Schrag S.J., Verani J.R. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA. 2022; 327 (7): 639–51. DOI: https://doi.org/10.1001/jama.2022.0470

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»