Synthetic siRNA molecules suppress Il4 and Il13 gene expression and reduce allergic inflammation and remodeling of upper airways in mouse model

Abstract

Introduction. Inflammation of the upper airways is usually associated with allergic rhinitis (AR), chronic rhinosinusitis with nasal polyps (CRSwNP) etc. AR is one of the most common inflammatory diseases. Its pathogenesis includes increased production of allergen-specific IgE antibodies, infiltration of the nasal mucosa with inflammatory cells, and remodeling of the respiratory tract. It has been shown that Th2-cytokines (IL-4 and IL-13) play a key role in this pathology, which makes them promising targets for therapy. Drugs based on monoclonal antibodies targeted to these cytokines have been developed and demonstrated clinical efficacy, while its broad use is limited by high cost. Currently, new technologies for regulation of gene expression are developed. For example, small interfering RNA (siRNA) molecules can suppress the expression of genes encoding pro-inflammatory cytokines.

The aim of this study was to develop siRNAs suppressing the expression of Il4 and Il13 genes and to reveal their biological effects on the inflammation of the upper respiratory tract in a mouse model.

Material and methods. The design of siRNA molecules was carried out using specialized software. Screening of siRNA biological activity was performed by in vitro experiments. The production of IL-4 and IL-13 was evaluated by ELISA and the expression of the corresponding genes by real-time polymerase chain reaction (RT-PCR). Induction of upper respiratory tract inflammation in mice was performed by subcutaneous and intranasal administration of ovalbumin chicken egg allergen (OVA). Experimental therapy was carried out by intranasal administration of siRNA molecules in complex with the LTP carrier peptide. A corticosteroid drug, budesonide, was used as a positive control. Nasal hyperreactivity was evaluated. Levels of allergen-specific IgE, IgG1 and IgG2a antibodies in mice blood sera, as well as levels of IL-4 and IL-13 production by submandibular lymph nodes were determined by ELISA. Infiltration of the nasal mucosa by proinflammatory cells was assessed by histological methods.

Results. Intranasal administration of siRNAs targeted to genes encoding IL-4 and IL-13 reduced the production of these cytokines in local (submandibular) lymph nodes. Suppression IL-4 and IL-13 production resulted in decrease in the levels of allergen-specific IgE- and IgG1-antibodies in the serum of mice and nasal hyperreactivity. A decrease in inflammation and upper respiratory tract remodeling was also observed after siRNA mediated suppression of IL-4 and IL-13 production.

Conclusion. Experimental therapy with siRNAs suppressing the production of pro-inflammatory cytokines IL-4 and IL-13 significantly alleviated the symptoms of allergic inflammation of the upper respiratory tract. Synthetic siRNAs have significant potential in the treatment of inflammatory diseases.

Keywords:allergy; allergic rhinitis; inflammation; cytokines; siRNA; peptide

For citation: Shilovskiy I.P., Timotievich E.D., Kaganova M.M., Kovchina V.I., Yumashev K.V., Nikolskii A.A., Vishnyakova L.I., Sundukova M.S., Tyulyubaev V.V., Brylina V.E., Rusak T.E., Kurbacheva O.M., Dyneva M.E., Petukhova O.A., Gudima G.O., Kudlay D.A., Khaitov M.R. Synthetic siRNA molecules suppress Il4 and Il13 gene expression and reduce allergic inflammation and remodeling of upper airways in mouse model. Immunologiya. 2023; 44 (5): 586–606. DOI: https://doi.org/10.33029/1816-2134-2023-44-5-586-606 (in Russian)

Funding. The study was supported by the grant of Russian Science Foundation No. 19-15-00272 (URL: https://rscf. ru/project/19-15-00272).

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Study conception and design – Shilovskiy I.P., Khaitov M.R.; material collection and processing – Timotievich E.D., Nikolskii A.A., Kovchina V.I., Vishnyakova L.I., Yumashev K.V., Sundukova M.S., Kaganova M.M., Rusak T.E.; statistical processing – Timotievich E.D., Kaganova M.M.; manuscript preparation – Shilovskiy I.P., Timotievich E.D., Kaganova M.M. Tyulyubaev V.V.; editing – Gudima G.O., Kudlay D.A., Kurbacheva O.M., Dyneva M.E., Petukhova O.A., Kaganova M.M., Brylina V.E.

References

1. Astafieva N.G., Baranov A.A., Vishneva E.A., Daiches N.A., Zhestkov A.V., Ilyina N.I., Karneeva O.V., Karpova E.P., Kim I.A., Kryukov A.I., Kurbacheva O.M., Meshkova R.Y., Namazova-Baranova L.S., Nenasheva N.M., Novik G.A., Nosulya E.V., Pavlova K.S., Pampura A.N., Svistushkin V.M., Selimzyanova L.R., Khaitov M.R., Khaitov R.M. Allergic rhinitis. Russian Journal of Allergy. 2022; 19 (1): 100–41. DOI: https://www.doi.org/10.36691/RJA1524 (in Russian)

2. Yoo E.R., Corey P.J. Allergic rhinitis in the elderly. Global atlas of allergic rhinitis and chronic rhinosinusitis. European Academy of Allergy and Clinical Immunology. 2015; 252–3.

3. Pols D.H.J., Wartna J.B., Moed H., van Alphen E.I., Bohnen A.M., Bindels P.J.E. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand J Prim Health Care. 2016; 34 (2): 143–50. DOI: https://www.doi.org/10.3109/0281343.2016.1160629

4. Xiao J., Wen-Xu W., Yuan-Yuan Y., Lin W.J., Wang L. A network meta-analysis of randomized controlled trials focusing on different allergic rhinitis medications. Am J Therapeutics. 2016; 23 (6): 1568–78. DOI: https://www.doi.org/10.1097/mjt.0000000000000242

5. May J.R., Dolen K.W. Management of allergic rhinitis: a review for the community pharmacist. Clin Ther. 2017; 39: 2410–19. DOI: https://www.doi.org/10.1016/j.clinthera.2017.10.006

6. Vandenplas O., Vinnikov D., Blanc P., Agache I., Bachert C., Bewick M., Cardell L., Cullinan P., Demoly P., Descatha A., Fonseca J., Haahte-la T., Hellings P., Jamart J., Jantunen J., Kalayci Ö., Price D., Samolinski B., Sastre J., Tian L., Valero A., Zhang X., Bousquet J. Impact of rhinitis on work productivity: a systematic review. J Allergy Clin Immunol Pract. 2018; 6: 1274–86. DOI: https://www.doi.org/10.1016/j.jaip.2017.09.002

7. Pipet A., Botturi K., Pinot D., Vervloet D., Magnan A. Allergen-specific immunotherapy in allergic rhinitis and asthma. Mechanisms and proof of efficacy. Respir Med. 2009; 103: 800–12. DOI: https://www.doi.org/10.1016/j.rmed.2009.01.008

8. Winther L., Arnved J., Malling H.J., Nolte H., Mosbech H. Side-effects of allergen-specific immunotherapy. A prospective multi-centre study. Clin Exp Allergy. 2006; 36 (3): 254–60. DOI: https://www.doi.org/10.1111/j.1365-2222.2006.02340.x

9. Gusniev S., Polner S., Mikhaleva L., Ilina N., Esakova A., Kurbacheva O., Shilovskiy I., Khaitov M. Influence of interleukin-33 gene expression on clinical and morphological characteristics of the nasal mucosa in allergic rhinitis. Immunologiya. 2021; 42 (1): 68–79. DOI: https://www.doi.org/10.33029/0206-4952-2021-42-1-68-79 (in Russian)

10. Shilovskiy I.P., Nikonova A.A., Barvinskaia E.D., Kaganova M.M., Nikolskii A.A., Vishnyakova L.I., Kovchina V.I., Yumashev K.V., Korneev A.V., Petukhova O.A., Kudlay D.A., Smirnov V.V., Andreev S.M., Kozhikhova K.V., Shatilov A.A., Shatilova A.V., Maerle A.V., Sergeev I.V., Trofimov D.Y., Khaitov M.R. Anti-inflammatory effect of siRNAs targeted il-4 and il-13 in a mouse model of allergic rhinitis. Allergy. 2022; 77 (9): 2829–32. DOI: https://www.doi.org/10.1111/ALL.15366

11. Nur Husna S.M., Shukri N.M., Mohd Ashari N.S., Wong K.K. IL-4/IL-13 axis as therapeutic targets in allergic rhinitis and asthma. Peer J. 2022; 10. DOI: https://www.doi.org/10.7717/peerj.13444

12. Shilovskiy I.P., Eroshkina D.V., Babakhin A.A., Khaitov M.R. Anticytokine therapy of allergic asthma. Mol Biol. 2017; 51 (1): 3–17. DOI: https://www.doi.org/10.7868/S0026898416060197

13. Akdis C.A., Hellings P.W., Agache I., eds. Global atlas of allergic rhinitis and chronic rhinosinusitis. 2015; 1–442.

14. Harb H., Chatila T.A. Mechanisms of Dupilumab. Clin Exp Allergy. 2020; 50 (1): 5–14. DOI: https://www.doi.org/10.1111/cea.13491

15. Tohda Y., Matsumoto H., Miyata M., Taguchi Y., Ueyama M., Joulain F., Arakawa I. Cost-effectiveness analysis of dupilumab among patients with oral corticosteroid-dependent uncontrolled severe asthma in Japan. J Asthma. 2022; 59 (11): 2162–73. DOI: https://www.doi.org/10.1080/02770903.2021.1996596

16. Shilovskiy I.P., Sundukova M.S., Gaisina A.R., Laskin A.A., Smirnov V.V., Babakhin A.A., Khaitov M.R. RNA interference: new approach to the treatment of allergic asthma (a review). Russian Journal of Experimental and Clinical Pharmacology. 2016; 79: 35–44. (in Russian)

17. Shilovskiy I.P., Sundukova M.S., Korneev A.V., Nikolskii A.A., Barvinskaya E.D., Kovchina V.I., Vishniakova L.I., Turenko V.N., Yumashev K.V., Kaganova M.M., Brylina V.E., Sergeev I., Maerle A., Kudlay D.A., Petukhova O.A., Khaitov M.R. The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma. Int Immunopharmacol. 2022; 103. DOI: https://www.doi.org/10.1016/j.intimp.2021.108432

18. Koloskova O.O., Nosova A.S., Ilyukhina A.A., Shilovsky I.P. Liposomal siRNA delivery agents. Biopharmaceutical Journal. 2017; 9: 3–10. (in Russian)

19. Lee C.C., Huang H.Y., Chiang B.L. Lentiviral-mediated interleukin-4 and interleukin-13 RNA interference decrease airway inflammation and hyperresponsiveness. Hum Gene Ther. 2011; 22 (5): 577–86. DOI: https://www.doi.org/10.1089/hum.2009.105

20. Lee C.C., Huang H.Y., Chiang B.L. Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Molecular Therapy. 2008; 16: 60–5. DOI: https://www.doi.org/10.1038/sj.mt.6300309

21. Darcan-Nicolaisen Y., Meinicke H., Fels G., Hegend O., Haberland A., Kühl A., Loddenkemper C., Witzenrath M., Kube S., Henke W., Hamelmann E. Small interfering RNA against transcription factor STAT6 inhibits allergic airway inflammation and hyperreactivity in mice. J Immunol. 2009; 182: 7501–508. DOI: https://www.doi.org/10.4049/jimmunol.0713433

22. Kozhikhova K.V., Andreev S.M., Uspenskaya D.V., Shatilova A.V., Turetskiy E.A., Shatilov A.A., Lushnikova A.A., Vishnyakova L.I., Shilovskiy I.P., Smirnov V.V., Kudlay D.A., Khaitov M.R. Supercationic peptide dendrimers as vectors for nucleic acids delivery to mammalian cells. Immunologiya. 2022; 43: 320–32. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-3-320-332

23. Khaitov M.R., Shilovskiy I.P., Nikonova A.A., Shershakova N.N., Kamyshnikov O.Y., Babakhin A.A., Zverev V.V., Johnston S.L., Khaitov R.M. Small interfering RNAs targeted to interleukin-4 and respiratory syncytial virus reduce airway inflammation in a mouse model of virus-induced asthma exacerbation. Hum Gene Ther. 2014; 25: 642–50. DOI: https://www.doi.org/10.1089/hum.2013.142

24. Shilovsky I.P., Barvinskaya E.D., Kaganova M.M., Kovchina V.I., Yumashev K.V., Korneev A.V., Nikolskii A.A., Vishnyakova L.I., Brylina V.E., Rusak T.E., Kurbacheva O.M., Dyneva M.E., Petukhova O.A., Gudima G.O., Kudlay D.A., Khaitov M.R. A mouse model of allergic rhinitis mimicking the main manifestations of human pathology. Immunologiya. 2022; 43 (6): 654–72. DOI: https://www.doi.org/10.33029/0206-4952-2022-43-6-654-672 (in Russian)

25. Lu Z.J., Mathews D.H. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res. 2008; 36: 104–8. DOI: https://www.doi.org/10.1093/nar/gkn250

26. Kozhikhova K.V., Andreev S.M., Shilovskiy I.P., Timofeeva A.V., Gaisina A.R., Shatilov A.A., Turetskiy E.A., Andreev I.M., Smirnov V.V., Dvornikov A.S., Khaitov M.R. A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells. Org Biomol Chem. 2018; 16: 8181–90. DOI: https://www.doi.org/10.1039/c8ob02039f

27. Beck L.A., Thaci D., Hamilton J.D., Graham N.M., Bieber T., Rocklin R., Ming J.E., Ren H., Kao R., Simpson E., Ardeleanu M., Weinstein S.P., Pirozzi G., Guttman-Yassky E., Suárez-Fariñas M., Hager M.D., Stahl N., Yancopoulos G.D., Radin A.R. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014; 371: 130–9. DOI: https://www.doi.org/10.1056/NEJMoa1314768

28. Weinstein S.F., Katial R., Jayawardena S., Pirozzi G., Staudinger H., Eckert L., Joish V.N., Amin N., Maroni J., Rowe P., Graham N.M., Teper A. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol 2018; 142: 171–7. DOI: https://www.doi.org/10.1016/J.JACI.2017.11.051

29. Busse W.W., Maspero J.F., Rabe K.F., Papi A., Wenzel S.E., Ford L.B., Pavord I.D., Zhang B., Staudinger H., Pirozzi G., Amin N., Akinlade B., Eckert L., Chao J., Graham N.M., Teper A. Liberty asthma QUEST: phase 3 randomized, double-blind, placebo-controlled, parallel-group study to evaluate dupilumab efficacy/safety in patients with uncontrolled, moderate-to-severe asthma. Adv Ther. 2018; 35: 737–48. DOI: https://www.doi.org/10.1007/S12325-018-0702-4

30. Juel-Berg N., Darling P., Bolvig J., Foss-Skiftesvik M.H., Halken S., Winther L., Hansen K.S., Askjaer N., Heegaard S., Madsen A.R., Opstrup M.S. Intranasal corticosteroids compared with oral antihistamines in allergic rhinitis: A systematic review and metaanalysis. Am J Rhinol Allergy. 2017; 31: 19–28. DOI: https://www.doi.org/10.2500/ajra.2016.30.4397

31. Bernstein D.I., Schwartz G., Bernstein J.A. Allergic rhinitis: mechanisms and treatment. Immunol Allergy Clin North Am. 2016; 36: 261–78. DOI: https://www.doi.org/10.1016/j.iac.2015.12.004

32. Tuttolomondo M., Casella C., Hansen P.L., Polo E., Herda L.M., Dawson K.A., Ditzel H.J., Mollenhauer J. Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Mol Ther Nucleic Acids. 2017; 8: 264–76. DOI: https://www.doi.org/10.1016/j.omtn.2017.06.020

33. Khaitov M.R., Nikonova A.A., Kofiadi I.A., Shilovskiy I.P., Smirnov V.V., Elisytina O.G., Maerle A.V., Shatilov A.A., Shatilova A.V., Andreev S.M., Sergeev I.V., Trofimov D.Y., Latysheva T.V., Ilyna N.I., Martynov A.I., Rabdano S.O., Ruzanova E.A., Savelev N.S., Pletiukhina I.V., Safi A.S., Ratnikov V.A., Gorelov V.P., Kaschenko V.A., Kucherenko N.G., Umarova I.A., Moskaleva S.S., Fabrichnikov S.V., Zuev O.V., Pavlov N.B., Kruchko D.S., Berzin I.A., Goryachev D.V., Merkulov V.A., Shipulin G.A., Udin S.M., Trukhin V.P., Valenta R., Skvortsova V.I. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023; 78 (6): 1639–53. DOI: https://www.doi.org/10.1111/ALL.15663

34. Hofmaier S., Comberiati P., Matricardi P.M. Immunoglobulin G in IgE-mediated allergy and allergen-specific immunotherapy. Eur Ann Allergy Clin Immunol. 2014; 46: 6–11.

35. Miyajima I., Dombrowicz D., Martin T.R., Ravetch J.V., Kinet J.P., Galli S.J. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest. 1997; 99: 901–14. DOI: https://www.doi.org/10.1172/JCI119255

36. Oettgen H.C., Martin T.R., Wynshaw-Boris A., Deng C., Drazen J.M., Leder P. Active anaphylaxis in IgE-deficient mice. Nature. 1994; 370: 367–70. DOI: https://www.doi.org/10.1038/370367a0

37.Hosoya K., Satoh T., Yamamoto Y., Saeki K., Igawa K., Okano M., Moriya T., Imamura O., Nemoto Y., Yokozeki H. Gene silencing of STAT6 with siRNA ameliorates contact hypersensitivity and allergic rhinitis. Allergy. 2011; 66: 124–31. DOI: https://www.doi.org/10.1111/j.1398-9995.2010.02440.x

38.Kaszuba S.M., Baroody F.M., deTineo M., Haney L., Blair C., Naclerio R.M. Superiority of an intranasal corticosteroid compared with an oral antihistamine in the as-needed treatment of seasonal allergic rhinitis. Arch Intern Med. 2001; 161: 2581–587. DOI: https://www.doi.org/10.1001/archinte.161.21.2581

39.Pullerits T., Praks L., Ristioja V., Lötvall J. Comparison of a nasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 2002; 109: 949–55. DOI: https://www.doi.org/10.1067/mai.2002.124467

40.Mygind N., Nielsen L.P., Hoffmann H.J., Shukla A., Blumberga G., Dahl R., Jacobi H. Mode of action of intranasal corticosteroids. J Allergy Clin Immunol. 2001; 108: 16–25. DOI: https://www.doi.org/10.1067/mai.2001.115561

41.Hermelingmeier K.E., Weber R.K., Hellmich M., Heubach C.P., Mösges R. Nasal irrigation as an adjunctive treatment in allergic rhinitis: A systematic review and meta-analysis. Am J Rhinol Allergy. 2012; 26 (5): 119–25. DOI: https://www.doi.org/10.2500/ajra.2012.26.3787

42.Satdhabudha A., Poachanukoon O. Efficacy of buffered hypertonic saline nasal irrigation in children with symptomatic allergic rhinitis: A randomized double-blind study. Int J Pediatr Otorhinolaryngol. 2012; 76: 583–8. DOI: https://www.doi.org/10.1016/j.ijporl.2012.01.022

43.Carr W., Bernstein J., Lieberman P., Meltzer E., Bachert C., Price D., Munzel U., Bousquet J. A novel intranasal therapy of azelastine with fluticasone for the treatment of allergic rhinitis. J Allergy Clin Immunol. 2012; 129 (5): 1282–9. DOI: https://www.doi.org/10.1016/j.jaci.2012.01.077

44.Broek J.L., Bousquet J., Baena-Cagnani C.E., Bonini S., Canonica W.G., Casale T.B., van Wijk R.G., Ohta K., Zuberbier T., Schünemann H.J. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 Revision. J Allergy Clin Immunol. 2010; 126 (3): 466–76. DOI: https://www.doi.org/10.1016/j.jaci.2010.06.047

45. Ishak M.N., Shukri N.M., Ramli R.R. The effectiveness of budesonide nasal irrigation in patients with allergic rhinitis. Malays J Med Sci. 2022; 29 (1): 34–42. DOI: https://www.doi.org/10.21315/mjms2022.29.1.4

46.Wise S.K., Lin S.Y., Toskala E., Orlandi R.R., Akdis C.A., Alt J.A., Azar A., Baroody F.M., Bachert C., Canonica G.W., Chacko T., Cingi C., Ciprandi G., Corey J., Cox L.S., Creticos P.S., Custovic A., Damask C., DeConde A., DelGaudio J.M., Ebert C.S., Eloy J.A., Flanagan C.E., Fokkens W.J., Franzese C., Gosepath J., Halderman A., Hamilton R.G., Hoffman H.J., Hohlfeld J.M., Houser S.M., Hwang P.H., Incorvaia C., Jarvis D., Khalid A.N., Kilpeläinen M., Kingdom T., Krouse H., Larenas-Linnemann D., Laury A.M., Lee S.E., Levy J.M., Luong A.U., Marple B.F., McCoul E.D., McMains K.C., Melén E., Mims J.W., Moscato G., Mullol J., Nelson H.S., Patadia M., Pawankar R., Pfaar O., Platt M.P., Reisacher W., Rondón C., Rudmik L., Ryan M., Sastre J., Schlosser R.J., Settipane R.A., Sharma H.P., Sheikh A., Smith T.L., Tantilipikorn P., Tversky J.R., Veling M.C., Wang D.Y., Westman M., Wickman M., Zacharek M. International consensus statement on allergy and rhinology: allergic rhinitis. Int Forum Allergy Rhinol. 2018; 8: 108–352. DOI: https://www.doi.org/10.1002/alr.22073

47.Yurttas V., Şereflican M., Erkoçoğlu M., Terzi E.H., Kükner A., Oral M. Histopathological effects of intranasal phototherapy and nasal corticosteroids in allergic rhinitis in a rabbit model. J Photochem Photobiol B. 2015; 149: 289–91. DOI: https://www.doi.org/10.1016/j.jphotobiol.2015.06.011

48.Petty D.A., Blaiss M.S. Intranasal corticosteroids topical characteristics: Side effects, formulation, and volume. Am J Rhinol Allergy. 2013; 27: 510–3. DOI: https://www.doi.org/10.2500/ajra.2013.27.3949

49.Hirahara K., Mato N., Hagiwara K., Nakayama T. The pathogenicity of IL-33 on steroid-resistant eosinophilic inflammation via the activation of memory-type ST2 + CD4 + T cells. J Leukoc Biol. 2018; 104: 895–901. DOI: https://www.doi.org/10.1002/JLB.MR1117-456R

50.Poroshina A.S., Shershakova N.N., Shilovskiy I.P., Kadushkin A.G., Tahanovich A.D., Gudima G.O., Khaitov M.R. Role of IL-25, IL-33 and TSLP in the development of corticosteroid resistance. Immunologiya. 2023; 44 (4): 500–10. DOI: https://www.doi.org/10.33029/0206-4952-2023-44-4-500-510 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»