Features of cell immunity of healthcare workers in the first wave of the SARS-CoV-2 infection pandemic

Abstract

Introduction. The role of the immune system in the clinical course of coronavirus infection 2019 (COVID-19) is of great interest. Health care workers are at greater risk of infection than the general population.

Aim of the study – evaluation of post-infection abnormalities in the immune system in recovered employees, identification of immunity vulnerability points, as well as development of appropriate preventive measures.

Material and methods. Cellular immunity indicators were determined by multiparameter flow cytometry in 170 medical workers of the N.N. Blokhin NMRCO of the MOH of Russia during the period of quarantine in March-July 2020. Samples of blood sera was tested by ELISA for the presence of specific IgG antibodies agaist SARS-CoV-2.

Results. The presence of specific anti-SARS-CoV-2 antibodies in employees who had an infection was detected only in 72 % (65/90). A high titer of specific anti-SARS-CoV-2 antibodies was found in 17 % (14/80) of employees who did not have clinical manifestations of a coronavirus infection. There were no statistically significant differences in the parameters of cellular immunity in the groups of recovered and not ill employees with the presence of specific anti-SARS-CoV-2 antibodies or their absence. Correlation analysis revealed a weak direct statistically significant relationship between the titer of specific anti-SARS-CoV-2 antibodies and level CD4+CD25+CD127 cells and an inverse relationship with level CD3+CD4+ cells.

Conclusion. The beginning of the formation of herd immunity in the examined medical workers during the first wave of the pandemic was recorded, regardless of the presence/absence of clinical manifestations of a viral infection prior to the study or specific anti-SARS-CoV-2 antibodies.

Keywords:cellular immunity; flow cytometry; anti-SARS-CoV-2 antibodies

For citation: Borunova A.A., Shoua E.K., Zakharova E.N., Chertkova A.I., Kadagidze Z.G., Shoua I.B., Davydova T.V., Kushlinskii N.E., Babkina I.V., Osipova N.G., Ternavskij A.P., Doroshev I.A., Kononets P.V., Stilidi I.S., Zabotina T.N. Features of cell immunity of healthcare workers in the first wave of the SARS-CoV-2 infection pandemic. Immunologya. 2023; 44 (6): 776–87. DOI: https://doi.org/10.33029/0206-4952-2023-44-6-776-787 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Zabotina T.N., Kononets P.V., Ternavsky A.P.; collection of material – Davydova T.V., Osipova N.V., Babkina I.V.; database creation – Shoua E. K., Shoua I.B.; material processing – Zakharova E.N.; statistical data processing – Borunova A.A.; writing the text – Borunova A.A., Zabotina T.N.; editing – Kushlinskii N.E., Doroshev I.A.; revision and correction – Kadagidze Z.G., Chertkova A.I.; approval of the final version of the article – Stilidi I.S.; responsibility for the integrity of all parts of the article – Zabotina T.N.

14. Piccoli L., Ferrari P., Piumatti G., Jovic S., Rodriguez B.F., Mele F., Giacchetto-Sasselli I., Terrot T., Silacci-Fregni C., Cameroni E., Jaconi S., Sprugasci N., Bartha I., Corti D., Uguccioni M., Lanzavecchia A., Garzoni C., Giannini O., Bernasconi E., Elzi L., Albanese E., Sallusto F., Ceschi A. Risk assessment and seroprevalence of SARS-CoV-2 infection in healthcare workers of COVID-19 and non-COVID-19 hospitals in Southern Switzerland. Lancet Reg. Health Eur. 2021; 1: 100013. DOI: https://doi.org/10.1016/j.lanepe.2020.100013.

15. Lahner E., Dilaghi E., Prestigiacomo C., Alessio G., Marcellini L., Simmaco M., Santino I., Orsi G.B., Anibaldi P., Marcolongo A., Annibale B., Napoli C. Prevalence of Sars-CoV-2 infection in Health Workers (HWs) and diagnostic test performance: the experience of a teaching hospital in central Italy. Int J Environ Res. Public Health. 2020; 17 (12): 4417. DOI: https://doi.org/10.3390/ijerph17124417

16. Poletti P., Tirani M., Cereda D., Guzzetta G., Trentini F., Marziano V., Toso C., Piatti A., Piccarreta R., Melegaro A., Andreassi A., Gramegna M., Ajelli M., Merler S. Seroprevalence of and risk factors associated with SARS-CoV-2 infection in health care workers during the early COVID-19 pandemic in Italy. JAMA Netw. Open. 2021; 4 (7): e2115699. DOI: https://doi.org/10.1001/jamanetworkopen.2021

17. Korth J., Wilde B., Dolff S., Anastasiou O.E., Krawczyk A., Jahn M., Cordes S., Ross B., Esser S., Lindemann M., Kribben A., Dittmer U., Witzke O., Herrmann A. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J Clin Virol. 2020; 128: 104437. DOI: https://doi.org/10.1016/j.jcv.2020.104437

18. Iversen K., Bundgaard H., Hasselbalch R.B., Kristensen J.H., Nielsen P.B., Pries-Heje M., Knudsen A.D., Christensen C.E., Fogh K., Norsk J.B., Andersen O., Fischer T.K., Jensen C.A.J., Larsen M., Torp-Pedersen C., Rungby J., Ditlev S.B., Hageman I., Møgelvang R., Hother C.E., Gybel-Brask M., Sørensen E., Harritshøj L., Folke F., Sten C., Benfield T., Nielsen S.D., Ullum H. Risk of COVID-19 in health-care workers in Denmark: an observational cohort study. Lancet Infect Dis. 2020; 20 (12):1401–8. DOI: https://doi.org/10.1016/S1473-3099(20)30589-2

19. Bouwman M., van Osch F., Crijns F., Trienekens T., Mehagnoul-Schipper J., van den Bergh J.P., de Vries J. SARS-CoV-2 seroprevalence in healthcare workers of a teaching hospital in a highly endemic region in the Netherlands after the first wave: a cross-sectional study. BMJ Open. 2021; 11 (10): e051573. DOI: https://doi.org/10.1136/bmjopen-2021-051573

20. Pierson-Marchandise M., Castelain S., Chevalier C., Brochot E., Schmit JL, Diouf M, Ganry O, Gignon M. Hospital-wide SARS-CoV-2 antibody screening of 4840 staff members in a University Medical Center in France: a cross-sectional study. BMJ Open. 2022; 12 (5): e047010. DOI: https://doi.org/10.1136/bmjopen-2020-047010

21. Kasztelewicz B., Janiszewska K., Burzyńska J., Szydłowska E., Migdał M., Dzierżanowska-Fangrat K. Prevalence of IgG antibodies against SARS-CoV-2 among healthcare workers in a tertiary pediatric hospital in Poland. PLoS One. 2021; 16 (4): e0249550. DOI: https://doi.org/10.1371/journal.pone.0249550

22. Sonmezer M.C., Erul E., Sahin T.K., Rudvan Al.I., Cosgun Y., Korukluoglu G., Zengin H., Telli Dizman G., Inkaya A.C., Unal S. Seroprevalence of SARS-CoV-2 antibodies and associated factors in healthcare workers before the era of vaccination at a tertiary care hospital in Turkey. Vaccines (Basel). 2022; 10 (2): 258. DOI: https://doi.org/10.3390/vaccines10020258

23. Kassem A.M., Talaat H., Shawky S., Fouad R., Amer K., Elnagdy T., Hassan W.A., Tantawi O., Abdelmoniem R., Gaber Y., Badary H.A., Musa S. SARS-CoV-2 infection among healthcare workers of a gastroenterological service in a tertiary care facility. Arab J Gastroenterol. 2020; 21 (3): 151–5. DOI: https://doi.org/10.1016/j.ajg.2020.07.005

24.Gupta R., Dwivedi T., Gajendra S., Sahoo B., Gupta S.K., Vikas H., Singh A.R., Mohan A., Bhatnagar S., Singh S., Wundavalli L., Guleria R. Seroprevalence of antibodies to SARS-CoV-2 in healthcare workers & implications of infection control practice in India. Indian J Med Res. 2021; 153 (1&2): 207–13. DOI: https://doi.org/10.4103/ijmr.IJMR_3911_20

25.Grant J.J., Wilmore S.M.S., McCann N.S., Donnelly O., Lai R.W.L., Kinsella M.J., Rochford H.L., Patel T., Kelsey M.C., Andrews J.A. Seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a London NHS Trust. Infect Control Hosp Epidemiol. 2021; 42 (2): 212–4. DOI: https://doi.org/10.1017/ice.2020.402

26.Self W.H., Tenforde M.W., Stubblefield W.B., Feldstein L.R. CDC COVID-19 Response Team; IVY Network. Seroprevalence of SARS-CoV-2 among frontline health care personnel in a multistate hospital network – 13 academic medical centers, April-June 2020. MMWR Morb Mortal Wkly Rep. 2020; 69 (35): 1221–6. DOI: https://doi.org/10.15585/mmwr.mm6935e2

27.Iruretagoyena M., Vial M.R., Spencer-Sandino M., Gaete P., Peters A., Delgado I., Perez I., Calderon C., Porte L., Legarraga P., Anderson A., Aguilera X., Vial P., Weitzel T., Munita J.M. Longitudinal assessment of SARS-CoV-2 IgG seroconversion among front-line healthcare workers during the first wave of the COVID-19 pandemic at a tertiary-care hospital in Chile. BMC Infect Dis. 2021; 21 (1): 478. DOI: https://doi.org/10.1186/s12879-021-06208-2

28. Dávila-Conn V., Soto-Nava M., Caro-Vega Y.N., Paz-Juárez H.E., García-Esparza P., Tapia-Trejo D., Pérez-García M., Belaunzarán-Zamudio P.F., Reyes-Terán G., Sierra-Madero J.G., Galindo-Fraga A., Ávila-Ríos S. Seroepidemiology of SARS-CoV-2 in healthcare personnel working at the largest tertiary COVID-19 referral hospitals in Mexico City. PLoS One. 2022; 17 (3): e0264964. DOI: https://doi.org/10.1371/journal.pone.0264964

29. Yazaki S., Yoshida T., Kojima Y., Yagishita S., Nakahama H., Okinaka K., Matsushita H., Shiotsuka M., Kobayashi O., Iwata S., Narita Y., Ohba A., Takahashi M., Iwasa S., Kobayashi K., Ohe Y., Yoshida T., Hamada A., Doi T., Yamamoto N. Difference in SARS-CoV-2 antibody status between patients with cancer and health care workers during the COVID-19 pandemic in Japan. JAMA Oncol. 2021; 7 (8): 1141–8. DOI: https://doi.org/10.1001/jamaoncol.2021.2159

30. Pan S.C., Huang Y.S., Hsieh S.M., Chen Y.C., Chang S.Y., Chang S.C. A cross-sectional seroprevalence for COVID-19 among healthcare workers in a tertially care hospital in Taiwan. J Formos Med Assoc. 2021; 120 (7): 1459–63. DOI: https://doi.org/10.1016/j.jfma.2021.01.002

31. Xu X., Sun J., Nie S., Li H., Kong Y., Liang M., Hou J., Huang X., Li D., Ma T., Peng J., Gao S., Shao Y., Zhu H., Lau J.Y., Wang G., Xie C., Jiang L., Huang A., Yang Z., Zhang K., Hou F.F. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat. Med. 2020; 26 (8): 1193–5. DOI: https://doi.org/10.1038/s41591-020-0949-6

32. Khaxari M., Sabet N., Soltani Z., Bashiri H. Patient gender influences body systems response and clinical outcome in COVID-19. Infection and immunity. 2021; 11 (6):1020–36. DOI: https://doi.org/10.15789/2220-7619-GRR-1664 (in Russian)

33. Liu X., Wang J., Xu X., Liao G., Chen Y., Hu C.H. Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg Microb Infect. 2020; 9: 1269–74. DOI: https://doi.org/10.1080/22221751.2020.1773324

34.Zakurskaya V.Ya., Sizyakina L.P., Kharitonova M.V., Shlyk S.V. Dynamics of specific humoral response in COVID-19 patients. Immunologiya. 2022; 43 (1): 71–7. DOI: https://doi.org/10.33029/0206-4952-2022-43-1-71-77 (in Russian)

35. Sydney E.R., Kishore P., Laniado I., Rucker L.M., Bajaj K., Zinaman M.J. Antibody evidence of SARS-CoV-2 infection in healthcare workers in the Bronx. Infect Control Hosp Epidemiol. 2020; 41 (11): 1348–9. DOI: https://doi.org/10.1017/ice.2020.437

36. Yarilin A.A. Immunology: textbook. Moscow: GEOTAR-Media, 2010. 749 p. ISBN: 978-5-9704-1319-7. (in Russian)

37. Wen W., Su W., Tang H., Le W., Zhang X., Zheng Y., Liu X., Xie L., Li J., Ye J., Dong L., Cui X., Miao Y., Wang D., Dong J., Xiao C., Chen W., Wang H. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020; 6: 1–18. DOI: https://doi.org/10.1038/s41421-020-0168-9

38. Jewett A. The potential effect of novel coronavirus SARS-CoV-2 on NK Cells; a perspective on potential therapeutic interventions. Front Immunol. 2020; 11: 1692. DOI: https://doi.org/10.3389/fimmu.2020.01692

39. Jiang Y., Wei X., Guan J., Qin S., Wang Z., Lu H., Qian J., Wu L., Chen Y., Chen Y., Lin X. COVID-19 pneumonia: CD8+ T and NK cells are decreased in number but compensatory increased in cytotoxic potential. Clin Immunol. 2020; 218: 108516. DOI: https://doi.org/10.1016/j.clim.2020.108516

40. Sekine T., Perez-Potti A., Rivera-Ballesteros O., Strålin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E.; Karolinska COVID-19 Study Group; Rooyackers O., Eriksson L.I., Henter J.I., Sönnerborg A., Allander T., Albert J., Nielsen M., Klingström J., Gredmark-Russ S., Björkström N.K., Sandberg J.K., Price D.A., Ljunggren H.G., Aleman S., Buggert M. Robust T Cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020; 183 (1): 158–68.e14. DOI: https://doi.org/10.1016/j.cell.2020.08.017

41. Yang L., Liu S., Liu J., Zhang Z., Wan X., Huang B., Chen Y., Zhang Y. COVID-19: Immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020; 5: 128–36. DOI: https://doi.org/10.1038/s41392-020-00243-2

42. Liu J., Yang X., Wang H., Li Z. Analysis of the long-term impact on cellular immunity in COVID-19-recovered individuals reveals a profound NKT Cell impairment. mBio. 2021; 12 (2): e00085-21. DOI: https://doi.org/10.1128/mBio.00085-21

43. Orumaa K., Dunne M.R. The role of unconventional T cells in COVID-19. Ir J Med Sci. 2022; 191 (2): 519–28. DOI: https://doi.org/10.1007/s11845-021-02653-9

44.Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Nat Sci Rev. 2020; 7: 998–1002. DOI: https://doi.org/10.1093/nsr/nwaa041

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»