3D models of malignant tumors – a modern approach to assessing the antitumor properties of macrophages

Abstract

Tumor tissue forms a complex microenvironment that consists of tumor cells, cells of the immune system, connective tissue cells, and extracellular matrix. The study of such a system requires a special approach that takes into account the contacts between all types of cells and the extracellular matrix. The transition from the usual two-dimensional (2D) cell co-culture on plastic surfaces to three-dimensional (3D) models of malignant tumors makes it possible to more accurately reproduce, under in vitro conditions, the complex interactions between cells as well as between cells and the extracellular matrix which occur only in vivo. Interactions between tumor cells and cells of the immune system have a key influence on the development of the tumor process and on the effectiveness of malignant neoplasm therapy. In this review, we consider main types of 3D models of malignant tumors, paying special attention to those designed to study the interactions of tumor cells and macrophages. Examples of the use of 3D models of malignant tumors for preclinical studies of drugs aimed at modulating macrophage functions are presented.

Keywords:3D cell cultures; macrophages; malignant neoplasms; spheroids; immunotherapy

For citation: Murugina N.E., Esipova D.D., Pashenkov M.V. 3D models of malignant tumors – a modern approach to assessing the antitumor properties of macrophages. Immunologiya. 2023; 44 (6): 802–12. DOI: https://doi.org/10.33029/0206-4952-2023-44-6-802-812 (in Russian)

Funding. The work was supported by a grant of the Russian Science Foundation No. 21-15-00211.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Literature analysis, article writing – Murugina N.E.; literature analysis, article writing – Esipova D.D.; literature analysis, editing and approval of the final text of the article – Pashenkov M.V.

References

1. Cesarz Z., Tamama K. Spheroid Culture of Mesenchymal Stem Cells. Stem Cells Int. 2016; 2016: 9176357. DOI: https://doi.org/10.1155/2016/9176357

2. Huang L., Abdalla A.M.E., Xiao L., et al. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int. J. Mol. Sci. 2020; 21 (5): 1895. DOI: https://doi.org/10.3390/IJMS21051895

3. Padmalayam I., Suto M.J. 3D Cell Cultures: Mimicking In Vivo Tissues for Improved Predictability in Drug Discovery. Annu. Rep. Med. Chem. 2012; 47: 367–78. DOI: https://doi.org/10.1016/B978-0-12-396492-2.00024-2

4. Kapałczyńska M., Kolenda T., Przybyła W., et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018; 14 (4): 910–19. DOI: https://doi.org/10.5114/AOMS.2016.63743

5. Poornima K., Francis A.P., Hoda M., et al. Implications of Three-Dimensional Cell Culture in Cancer Therapeutic Research. Front. Oncol. 2022; 12: 891673. DOI: https://doi.org/10.3389/FONC.2022.891673

6. Cutter S., Wright M.D., Reynolds N.P., et al. Towards using 3D cellular cultures to model the activation and diverse functions of macrophages. Biochem. Soc. Trans. 2023; 51 (1): 387–401. DOI: https://doi.org/10.1042/BST20221008

7. Ataullakhanov R.I., Ushakova E.I., Khudhur S. Al, et al. Reprogramming of myeloid cells of the tumor microenvironment – a new approach in the immunotherapy of malignant neoplasms. Immunologiya. 2022; 43 (4): 375–88. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-375-388 (in Russian)

8. Hinshaw D.C., Shevde L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019; 79 (18): 4557–66. DOI: https://doi.org/10.1158/0008-5472.CAN-18-3962

9. Ren B., Cui M., Yang G., et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol. Cancer. 2018; 17 (1): 108. DOI: https://doi.org/10.1186/S12943-018-0858-1

10. Hoffman R.M. In Memoriam: Joseph Leighton, 1921–1999 – Father of 3-Dimensional Tissue Culture. Methods Mol. Biol. 2018; 1760: 1–9. DOI: https://doi.org/10.1007/978-1-4939-7745-1_1

11. Ziello J.E., Jovin I.S., Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007; 80 (2): 51–60. PMID: 18160990

12. Koop E.A., Laar T. van, Wichen D.F. van, et al. Expression of BNIP3 in invasive breast cancer: Correlations with the hypoxic response and clinicopathological features. BMC Cancer. 2009; 9: 175. DOI: https://doi.org/10.1186/1471-2407-9-175

13. Ambrosio M.R., Serio C. Di, Danza G., et al. Carbonic anhydrase IX is a marker of hypoxia and correlates with higher Gleason scores and ISUP grading in prostate cancer. Diagn. Pathol. 2016; 11 (1): 45. DOI: https://doi.org/10.1186/s13000-016-0495-1

14. Arora L., Kalia M., Dasgupta S., et al. Development of a Multicellular 3D Tumor Model to Study Cellular Heterogeneity and Plasticity in NSCLC Tumor Microenvironment. Front. Oncol. 2022; 12: 881207. DOI: https://doi.org/10.3389/fonc.2022.881207

15. Jubelin C., Muñoz-Garcia J., Griscom L., et al. Three-dimensional in vitro culture models in oncology research. Cell Biosci. 2022; 12 (1): 155. DOI: https://doi.org/10.1186/s13578-022-00887-3

16. Shyam R., Reddy L.V.K., Palaniappan A. Fabrication and Characterization Techniques of In Vitro 3D Tissue Models. Int. J. Mol. Sci. 2023; 24 (3): 1912. DOI: https://doi.org/10.3390/ijms24031912

17. Heredia-Mendez A.J., Sánchez-Sánchez G., López-Camarillo C. Reprogramming of the Genome-Wide DNA Methylation Landscape in Three-Dimensional Cancer Cell Cultures. Cancers (Basel). 2023; 15 (7): 1991. DOI: https://doi.org/10.3390/CANCERS15071991

18. Li C., Jin B., Sun H., et al. Exploring the function of stromal cells in cholangiocarcinoma by three-dimensional bioprinting immune microenvironment model. Front. Immunol. 2022; 13: 941289. DOI: https://doi.org/10.3389/FIMMU.2022.941289

19. Nii T., Kuwahara T., Makino K., et al. A co-culture system of three-dimensional tumor-associated macrophages and three-dimensional cancer-associated fibroblasts combined with biomolecule release for cancer cell migration. Tissue Eng. 2020; 26 (23–24): 1272–82. DOI: https://doi.org/10.1089/ten.tea.2020.0095

20. Pizzurro G.A., Liu C., Bridges K., et al. 3D Model of the Early Melanoma Microenvironment Captures Macrophage Transition into a Tumor-Promoting Phenotype. Cancers (Basel). 2021; 13 (18): 4579. DOI: https://doi.org/10.3390/CANCERS13184579

21. McWhorter F.Y., Wang T., Nguyen P., et al. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. U. S. A. 2013; 110 (43): 17253–8. DOI: https://doi.org/10.1073/PNAS.1308887110

22. Li Y.R., Yu Y., Kramer A., et al. An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy. Cells. 2022; 11 (9): 1583. DOI: https://doi.org/10.3390/CELLS11091583

23. Huang Y., Feng Q., Jiang H., et al. Mimicking the Endometrial Cancer Tumor Microenvironment to Reprogram Tumor-Associated Macrophages in Disintegrable Supramolecular Gelatin Hydrogel. Int. J. Nanomedicine. 2020; 15: 4625–37. DOI: https://doi.org/10.2147/IJN.S252074

24. Ryu N.E., Lee S.H., Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells. 2019; 8 (12): 1620. DOI: https://doi.org/10.3390/CELLS8121620

25. Haisler W.L., Timm D.M., Gage J.A., et al. Three-dimensional cell culturing by magnetic levitation. Nat. Protoc. 2013; 8 (10): 1940–9. DOI: https://doi.org/10.1038/nprot.2013.125

26. Huang L., Xiao L., Jung Poudel A., et al. Porous chitosan microspheres as microcarriers for 3D cell culture. Carbohydr. Polym. 2018; 202: 611–20. DOI: https://doi.org/10.1016/J.CARBPOL.2018.09.021

27. Shen H., Cai S., Wu C., et al. Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. Micromachines. 2021; 12 (1): 96. DOI: https://doi.org/10.3390/MI12010096

28. Zhang Y., Liao K., Li C., et al. Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction. Bioeng. 2017; 4 (3): 72. DOI: https://doi.org/10.3390/BIOENGINEERING4030072

29. Artegiani B., Clevers H. Use and application of 3D-organoid technology. Hum. Mol. Genet. 2018; 27 (R2): R99–R107. DOI: https://doi.org/10.1093/HMG/DDY187

30. Lancaster M.A., Knoblich J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 2014; 345 (6194): 283–94. DOI: https://doi.org/10.1126/SCIENCE.1247125

31. Maura R., Francesco A., Simona R., et al. Three-dimensional models: a novel approach for lymphoma research. J. Cancer Res. Clin. Oncol. 2022; 148 (4): 753–65. DOI: https://doi.org/10.1007/S00432-021-03897-9/METRICS

32. Fontana F., Raimondi M., Marzagalli M., et al. Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells. 2019; 8 (2): 143. DOI: https://doi.org/10.3390/CELLS8020143

33. Sica A., Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 2012; 122 (3): 787–95. DOI: https://doi.org/10.1172/JCI59643

34. Gordon S., Martinez F.O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32 (5): 593–604. DOI: https://doi.org/10.1016/J.IMMUNI.2010.05.007

35. Wang S., Liu R., Yu Q., et al. Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett. 2019; 452: 14–22. DOI: https://doi.org/10.1016/J.CANLET.2019.03.015

36. Keskinov A.A., Shurin M.R. Myeloid regulatory cells in tumor spreading and metastasis. Immunobiology. 2015; 220 (2): 236–42. DOI: https://doi.org/10.1016/J.IMBIO.2014.07.017

37. Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011; 11 (11): 723–37. DOI: https://doi.org/10.1038/nri3073

38. Choi J., Gyamfi J., Jang H., et al. The role of tumor-associated macrophage in breast cancer biology. Histol. Histopathol. 2018; 33 (2): 133–45. DOI: https://doi.org/10.14670/HH-11-916

39. Murugina N.E., Murugin V. V., Pashenkov M. V. Antitumor activity of human macrophages activated by NOD1 and TLR4 receptor agonists in vitro. Immunologiya. 2022; 43 (5): 548–57. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-548-557 (in Russian)

40. Nascimento C., Castro F., Domingues M., et al. Reprogramming of tumor-associated macrophages by polyaniline-coated iron oxide nanoparticles applied to treatment of breast cancer. Int. J. Pharm. 2023; 636: 122866. DOI: https://doi.org/10.1016/J.IJPHARM.2023.122866

41. Blenman K.R.M., Wang J., Cowper S., et al. Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma. Pigment Cell Melanoma Res. 2019; 32 (3): 448–57. DOI: https://doi.org/10.1111/PCMR.12769

42. Araujo-Ayala F., Dobaño-López C., Valero J.G., et al. A novel patient-derived 3D model recapitulates mantle cell lymphoma lymph node signaling, immune profile and in vivo ibrutinib responses. Leukemia. 2023; 37 (6): 1311–23. DOI: https://doi.org/10.1038/S41375-023-01885-1

43. Lee S., Ki C.S. Proteolytically degradable PEG hydrogel matrix mimicking tumor immune microenvironment for 3D co-culture of lung adenocarcinoma cells and macrophages. J. Biomater. Sci. Polym. Ed. 2023; 1–19. DOI: https://doi.org/10.1080/09205063.2023.2204778

44. Meli V.S., Atcha H., Veerasubramanian P.K., et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci. Adv. 2020; 6 (49): eabb8471. DOI: https://doi.org/10.1126/SCIADV.ABB8471

45. Stadler M., Pudelko K., Biermeier A., et al. Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. 2021; 520: 184–200. DOI: https://doi.org/10.1016/J.CANLET.2021.07.006

46. Nii T., Kuwahara T., Makino K., et al. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng. 2020; 26 (23–24): 1272–82. DOI: https://doi.org/10.1089/TEN.TEA.2020.0095

47. Thomas M.U., Messex J.K., Dang T., et al. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK. FEBS J. 2021; 288 (6): 1871–86. DOI: https://doi.org/10.1111/FEBS.15541

48. Helleberg Madsen N., Schnack Nielsen B., Larsen J., et al. In vitro 2D and 3D cancer models to evaluate compounds that modulate macrophage polarization. Cell. Immunol. 2022; 378: 104574. DOI: https://doi.org/10.1016/J.CELLIMM.2022.104574

49. Li C., Song J., Guo Z., et al. EZH2 Inhibitors Suppress Colorectal Cancer by Regulating Macrophage Polarization in the Tumor Microenvironment. Front. Immunol. 2022; 13: 857808. DOI: https://doi.org/10.3389/fimmu.2022.857808

50. Xiao Y., Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021; 221: 107753. DOI: https://doi.org/10.1016/J.PHARMTHERA.2020.107753

51. Pampaloni F., Reynaud E.G., Stelzer E.H.K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007; 8 (10): 839–45. DOI: https://doi.org/10.1038/nrm2236

52. Tang M., Xie Q., Gimple R.C., et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020; 30 (10): 833–53. DOI: https://doi.org/10.1038/S41422-020-0338-1

53. Rodriguez-Perdigon M., Haeni L., Rothen-Rutishauser B., Rüegg C. Dual CSF1R inhibition and CD40 activation demonstrates anti-tumor activity in a 3D macrophage- HER2+ breast cancer spheroid model. Front Bioeng Biotechnol. 2023; 11: 1159819. DOI: https://doi.org/10.3389/fbioe.2023.1159819

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»