Prospectives of application of the genetically modified lymphocytes with chimeric T-cell receptor (CAR-T-cells) for the therapy of solid tumors

Abstract

In recent years new methods of adoptive cell therapy using genetically engineered T-cells have been introduced into clinical practice of oncology. Modification of chimeric antigenic receptors (CARs) confers T-cells with specific antitumor cytotoxicity and, thus, induces immune response against malignant neoplasms. Despite the significant success of these strategies in hemoblastoses, targeting CAR-T-cells to solid tumors is more difficult due to the characteristics of the histopathological structure, lack of specific antigens and the immunosuppressive environment of solid tumors. In addition, toxicity caused by the relative target expression in normal tissues is another problem that should be considered. This review is devoted to analysis of factors limiting the use of CAR-T-cell therapy in the treatment of solid tumors and description of some new approaches that are considered promising for overcoming these obstacles.

Keywords:CAR-T-cells; immunotherapy; solid tumors; review

Received 24.03.2019. Accepted 16.04.2019.

For citation: Kiselevsky M.V., Chikileva I.O., Sitdikova S.M., Vlasenko R.Ya., Karaulov A.V. Prospectives of application of the genetically modified lymphocytes with chimeric T-cell receptor (CAR-T-cells) for the therapy of solid tumors. Immunologiya. 2019; 40 (4): 48-55. doi: 10.24411/0206-4952-2019-14006 (in Russian)

Acknowledgements. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

References

1. Maus M.V., Haas A.R., Beatty G.L., et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 2013; 1: 26-31. doi: 10.1158/2326-6066.CIR-13-0006.

2. Hinrichs C.S., Restifo N.P. Reassessing target antigens for adoptive T-cell therapy. Nat. Biotechnol. 2013; 31 (11): 999-1008. doi: 10.1038/nbt.2725.

3. Yu S., Li A., Liu Q., et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J. Hematol. Oncol. 2017; 10 (1): 78. doi: 10.1186/s13045-017-0444-9.

4. Brown C.E., Alizadeh D., Starr R., et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 2016; 375 (26): 2561-9. doi: 10.1056/NEJMoa1610497.

5. Wilkie S., van Schalkwyk M.C., Hobbs S., et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 2012; 32 (5): 1059-70. doi: 10.1007/s10875-012-9689-9.

6. Sommermeyer D., Hudecek M., Kosasih P.L., et al. Riddell SR. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016; 30: 492-500. doi: 10.1038/leu.2015.247.

7. Adusumilli P.S., Cherkassky L., Villena-Vargas J., et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 2014; 6 (261): 261ra151.

8. Craddock J.A., Lu A., Bear A., et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J.Immunother. 2010; 33 (8): 780-8.

9. Moon E.K., Carpenito C., Sun J., et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 2011; 17: 4719-30. doi: 10.1158/1078-0432.CCR-11-0351.

10. Peng W., Ye Y., Rabinovich B.A., et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 2010; 16 (22): 5458-68.

11. Caruana I., Savoldo B., Hoyos V., et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 2015; 21: 524-9. doi: 10.1038/nm.3833.

12. Zhang C., Wang Z., Yang Z., et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol. Ther. 2017; 25 (5): 1248-58. doi: 10.1016/j.ymthe.2017.03.010.

13. Schuberth P.C., Hagedorn C., Jensen S.M., et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J. Transl. Med. 2013; 11: 187. doi: 10.1186/1479-5876-11-187.

14. Stroncek D.F., Ren J., Lee D.W., et al. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy. 2016; 18: 893-901. doi: 10.1016/j.jcyt.2016.04.003.

15. Ahmed N., Brawley V.S., Hegde M., et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 2015; 33: 1688-96. doi: 10.1200/JCO.2014.58.0225.

16. Hassan R., Thomas A., Alewine C., et al. Mesothelin immunotherapy for cancer: ready for prime time? J. Clin. Oncol. 2016; 34: 4171-9. doi: 10.1200/JCO.2016.68.3672.

17. Krenciute G., Krebs S., Torres D., et al. Characterization and functional analysis of scFv-based chimeric antigen receptors to redirect T cells to IL13Ralpha2-positive glioma. Mol. Ther. 2016; 24: 354-63. doi: 10.1038/mt.2015.199.

18. Whilding L.M., Parente-Pereira A.C., Zabinski T., et al. Targeting of aberrant alphavbeta6 integrin expression in solid tumors using chimeric antigen receptor-engineered T cells. Mol. Ther. 2017; 25: 259-73. doi: 10.1016/j.ymthe.2016.10.012.

19. Pule M.A., Savoldo B., Myers G.D., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 2008; 14: 1264-70. doi: 10.1038/nm.1882.

20. Feng K., Guo Y., Dai H., et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci. China Life Sci. 2016; 59: 468-79. doi: 10.1007/s11427-016-5023-8.

21. Katz S.C., Burga R.A., McCormack E., et al. Phase I Hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin. Cancer Res. 2015; 21: 3149-59. doi: 10.1158/1078-0432.CCR-14-1421.

22. Wang G., Lu X., Dey P., et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 2016; 6: 80-95. doi: 10.1158/2159-8290.CD-15-0224.

23. Slaney C.Y., Kershaw M.H., Darcy P.K. Trafficking of T cells into tumors. Cancer Res. 2014; 74: 7168-74. doi: 10.1158/0008-5472.CAN-14-2458.

24. Wang L.C., Lo A., Scholler J., et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2014; 2: 154-66. doi: 10.1158/2326-6066.CIR-13-0027.

25. Feig C., Jones J.O., Kraman M., et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA. 2013; 110: 20 212-7. doi: 10.1073/pnas.1320318110.

26. Harlin H., Meng Y., Peterson A.C., et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009; 69: 3077-85. doi: 10.1158/0008-5472.CAN-08-2281.

27. Di Stasi A., De Angelis B., Rooney C.M., et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009; 113: 6392-402. doi: 10.1182/blood-2009-03-209650.

28. Suarez E.R., Chang de K., Sun J., et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget. 2016; 7: 34341-55. doi: 10.18632/oncotarget.9114.

29. John L.B., Devaud C., Duong C.P., et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 2013; 19: 5636-46. doi: 10.1158/1078-0432.CCR-13-0458.

30. Moon E.K., Wang L.C., Dolfi D.V., et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 2014; 20: 4262-73. doi: 10.1158/1078-0432.CCR-13-2627.

31. Wallace A., Kapoor V., Sun J., et al. Transforming growth factor-beta receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res. 2008; 14: 3966-74. doi: 10.1158/1078-0432.CCR-08-0356.

32. Koneru M., Purdon T.J., Spriggs D., et al. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015; 4: e994446. doi: 10.4161/2162402X.2014.994446.

33. Choi B.D., Archer G.E., Mitchell D.A., et al. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol. 2009; 19: 713-23. doi: 10.1111/j.1750-3639.2009.00318.x.

34. Johnson L.A., Scholler J., Ohkuri T., et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci. Transl. Med. 2015; 7: 275ra22. doi: 10.1126/scitranslmed.aaa4963.

35. Kloss C.C., Condomines M., Cartellieri M., et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 2013; 31: 71-5. doi: 10.1038/nbt.2459.

36. Caruso H.G., Hurton L.V., Najjar A., et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015; 75: 3505-18. doi: 10.1158/0008-5472.CAN-15-0139.

37. Fedorov V.D., Themeli M., Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 2013; 5: 215ra172. doi: 10.1126/scitranslmed.3006597.

38. Van Seggelen H., Tantalo D.G., Afsahi A., et al. Chimeric antigen receptor-engineered T cells as oncolytic virus carriers. Mol. Ther. Oncolytics. 2015; 2: 15014.

39. Nishio N., Dotti G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. Oncoimmunology. 2015; 4 (2):e988098.

40. Juillerat A., Marechal A., Filhol J.M., et al. An oxygen sensitive self-decision making engineered CAR T-cell. Sci. Rep. 2017; 7: 39833.

41. Sommermeyer D., Hill T., Shamah S.M., et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia. 2017; 31 (10): 2191-9. doi: 10.1038/leu.2017.57.

42. Peggs K.S., Quezada S.A., Allison J.P. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin. Exp. Immunol. 2009; 157: 9-19. doi: 10.1111/j.1365-2249.2009.03912.x.

43. Topalian S.L., Hodi F.S., Brahmer J.R., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012; 366: 2443-54. doi: 10.1056/NEJMoa1200690.

44. Chanan-Khan A.A., Cheson B.D. Lenalidomide for the treatment of B-cell malignancies. J. Clin. Oncol. 2008; 26: 1544-52. doi: 10.1200/JCO.2007.14.5367.

45. Kuramitsu S., Ohno M., Ohka F., et al. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses. Cancer Gene Ther. 2015; 22: 487-95. doi: 10.1038/cgt.2015.47.

46. Kusmartsev S., Cheng F., Yu B., et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003; 63: 4441-9.

47. Long A.H., Highfill S.L., Cui Y., et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 2016; 4: 869-80. doi: 10.1158/2326-6066.CIR-15-0230.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»