A clinical case of inhaled cytokine use in a patient with breast cancer and lung tumors of unknown origin

Abstract

Introduction. Cytokines can be an effective tool for immunotherapy of tumors, however, by the usual routes of administration – intravenous infusion and intramuscular or subcutaneous injections (systemic administration) – a small part of the injected cytokines can reach target cells in the organs of the respiratory system.

Aim – to demonstrate the possibility of prevention of breast cancer metastases using cytokine drugs and to present an algorithm for patient management.

Material and methods. An inhalation method of administration of pharmacopoeial cytokines (Refnot, Ingaron, Reaferon, Roncoleukin) was used to prevent the development of lung metastases in a patient with breast cancer who is under dynamic observation for suspected lung metastases.

Results. After 3 courses of cytokinotherapy, previously noted micro-nodes were not detected by PET-CT methods. Data for recent focal and infiltrative changes in the lungs were also not recorded. There was no increase in temperature or other adverse events.

Conclusion. Inhaled cytokine drugs can provide the approach of targeted and better tolerated comprehensive preventive antitumor immunotherapy in patients with possible respiratory metastases.

Keywords:breast cancer; hematogenous metastasis; tumor necrosis factor; thymosin; interferon gamma; interferon alpha; interleukins

For citation: Stakheyeva M.N., Bogdashin I.V., Tarabanovskaya N.A., Grigoriev E.G., Aleksanyan A.Z. A clinical case of inhaled cytokine use in a patient with breast cancer and lung tumors of unknown origin. Immunologiya. 2024; 45 (3): 321–8. DOI: https://doi.org/10.33029/1816-2134-2024-45-3-321-328 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Authors declare no conflict of interests.

Author’s contribution. Development of the concept of work – Stakheyeva M.N., Bogdashin I.V.; data processing – Stakheyeva M.N.; data analysis – Stakheyeva M.N., Bogdashin I.V.; drafting and structuring of the draft manuscript – Stakheyeva M.N., Bogdashin I.V.; clinical observation and description – Bogdashin I.V., Tarabanovskaya N.A., Grigoriev E.G.; writing the text of the article – Stakheyeva M.N.; final approval of the published version – Stakheyeva M.N., Bogdashin I.V., Aleksanyan A.Z.

References

1. Chaffer C.L., Weinberg R.A. A Perspective on Cancer Cell Metastasis. Science. 2011; 331: 1559–64. DOI: http://doi.org/10.1126/science.1203543

2. Medeiros B., Allan A.L. Molecular Mechanisms of Breast Cancer Metastasis to the Lung: Clinical and Experimental Perspectives. Int. J. Mol. Sci. 2019; 20: 2272. DOI: http://doi.org/10.3390/ijms20092272

3. Afifi A.M., Saad A.M., Al-Husseini M.J., Elmehrath A.O., Northfelt D.W., Sonbol M.B. Causes of death after breast cancer diagnosis: A US population-based analysis. Cancer. 2020; 126 (7): 1559–67. DOI: http://doi.org/10.1002/cncr.32648

4. Borin T.F., Angara K., Rashid M., Shankar A., Iskander A., Ara R., Jain M., Achyut B.R., Arbab A.S. Abstract 1043: CSF-1R inhibitor prevented pre-metastatic lung niches in metastatic mammary tumor. Cancer Res. 2017; 77: 1043. DOI: http://doi.org/10.3390/ijms20092272

5. Eisenblaetter M., Flores-Borja F., Lee J.J., Wefers C., Smith H., Hueting R., Cooper M.S., Blower P.J., Patel D., Rodríguez-Justo M., Milewicz H., Vogl T., Roth J., Tutt A., Schaeffter T., Ng T. Visualization of Tumor-Immune Interaction – Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment. Theranostics. 2017; 7: 2392–401. DOI: http://doi.org/10.7150/thno.17138

6. Lee S.H., Diamond M., Chadderton A., Liu H., Volgina A., Roman V., Weber M., He C., Stewart R., Hertel D., Liu P., Wu L., Oliver J., Yeleswaram S., Roberts A., Yao W., Hollis G., Huber R., Scherle P., Ruggeri B. Abstract 3929: The FAD-directed LSD1 specific inhibitor, INCB059872, inhibits cell migration and metastasis by suppressing premetastatic niche formation in a spontaneous metastasis mouse model. Cancer Res. 2018; 78 (13S): 3929. DOI: http://doi.org/10.1158/1538-7445.AM2018-3929

7. Gennari A., Conte P., Rosso R., Orlandini C., Bruzzi P. Survival of metastatic breast carcinoma patients over a 20-y period: a retrospective analysis based on individual patient data from six consecutive studies. Cancer. 2005; 104 (8): 1742–50. DOI: http://doi.org/10.1002/cncr.21359

8. Jina L., Hanb B., Siegelb E., Cuic Y., Giulianob A., Cuib X. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol. Ther. 2018; 19 (10): 858–68. DOI: http://doi.org/10.1080/15384047.2018.1456599

9. Adhikary S., Pathak S., Palani V., Acar A., Banerjee A., Al-Dewik N.I., Essa M.M., Mohammed S.G.A.A., Qoronfleh M.W. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach Biomed. 2024; 12: 217. DOI: http://doi.org/10.3390/biomedicines12010217

10. Bidwell B.N., Slaney C.Y., Withana N.P., Forster S., Cao Y., Loi S., Andrews D., Mikeska T., Mangan N.E., Samarajiwa S.A., de Weerd N.A., Gould J., Argani P., Möller A., Smyth M.J., Anderson R.L., Hertzog P.J., Parker B.S. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 2012; 18: 1224–31. DOI: http://doi.org/10.1186/bcr3620

11. Stakheyeva M., Riabov V., Mitrofanova I., Litviakov N., Choynzonov E., Cherdyntseva N., Kzhyshkowska J. Role of the Immune Component of Tumor Microenvironment in the Efficiency of Cancer Treatment: Perspectives for the Personalized Therapy. Curr. Pharm. Des. 2017; 23 (32): 4807–26. DOI: http://doi.org/10.2174/1381612823666170714161703

12. Stakheyeva M., Eidenzon D., Slonimskaya E., Patysheva M., Bogdashin I., Kolegova E., Grigoriev E., Choinzonov E., Cherdyntseva N. Integral characteristic of the immune system state predicts breast cancer outcome. Exp. Oncol. 2019; 41 (1): 32–8. DOI: http://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-1.12593

13.Михайлова И.Н., Стахеева М.Н., Шубина Ш.Ж., Чкадуа Г.З., Борунова А.А., Зуков Р.А., Богдашин И.В., Чойнозов Е.Л., Чердынцева Н.В. Иммунная система вносит вклад в эффективность вакцинотерапии у больных метастатической меланомой. Сибирский онкологический журнал. 2023; 22 (2): 43–55. DOI: http://doi.org/10.21294/1814-4861-2023-22-2-43-55 [Mikhaylova I.N., Stakheyeva M.N., Shubina I.Zh., Chkadua G.Z., Borunova A.A., Zukov R.A., Bogdashin I.V., Choynzonov E.L., Cherdyntseva N.V. The immune system contributes to the effectiveness of vaccine therapy in patients with metastatic melanoma. Siberian Journal of Oncology. 2023; 22 (2): 43–55. DOI: http://doi.org/10.21294/1814-4861-2023-22-2-43-55

14. Eldenzon D., Shamroni D., Volovodenko V. Method and system for multidimensional data visualization. Saarbrucken: LAP LAMBERT Academic Publishing. 2013: 45 p.

15. Sato N., Nariuchi H., Tsuruoka N., Nishihara T., Beitz J.G., Calabresi P., Frackelton Jr. A.R. Actions of TNF and IFN-gamma on angiogenesis in vitro. J. Invest. Dermatol. 1990; 95 (6 Suppl): 85–9. DOI: http://doi.org/10.1111/1523-1747.ep12874809

16. Vaillant A.A.J., Qurie A. Interleukin. In: StatPearls. Updated August 22, 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK499840/ (дата обращения 04.03.2024)

17. Berraondo P., Sanmamed M.F., Ochoa M.C., Etxeberria I., Aznar M.A., Pérez-Gracia J.L., Rodríguez-Ruiz M.E., Ponz-Sarvise M., Castañón E., Melero I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer. 2019; 120 (1): 6–15. DOI: http://doi.org/10.1038/s41416-018-0328-y

18. Negishi H., Taniguchi T., Yanai H. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb. Perspect. Biol. 2018; 10 (11): a028423. DOI: http://doi.org/10.1101/cshperspect.a028423

19. Morris R.M., Mortimer T.O., O’Neill K.L. Cytokines: can cancer get the message? Cancers (Basel). 2022; 14 (9): 2178. DOI: http://doi.org/10.3390/cancers14092178

20. Qiu Y., Su M., Liu L., Tang Y., Pan Y., Sun J. Clinical application of cytokines in cancer immunotherapy. Drug Des. Devel. Ther. 2021; 15: 2269–87. DOI: http://doi.org/10.2147/DDDT.S308578

21. Xue D., Hsu E., Fu Y.X., Peng H. Next-generation cytokines for cancer immunotherapy. Antib. Ther. 2021; 4 (2): 123–33. DOI: http://doi.org/10.1093/abt/tbab014

22. Chen D., Tang T.X., Deng H., Yang X.P., Tang Z.H. Interleukin-7 biology and its effects on immune cells: mediator of generation, differentiation, survival, and homeostasis. Front. Immunol. 2021; 12: 747324. DOI: http://doi.org/10.3389/fimmu.2021.747324

23. Lee A.J., Ashkar A.A. The dual nature of type I and type II interferons. Front. Immunol. 2018; 9: 2061. DOI: http://doi.org/10.3389/fimmu.2018.02061

24. Zitvogel L., Apetoh L., Ghiringhelli F., Kroemer G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008; 8: 59–73. DOI: http://doi.org/10.1038/nri2216

25. Saxton R.A., Glassman C.R., Garcia K.C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 2023; 22 (1): 21–37. DOI: http://doi.org/10.1038/s41573-022-00557-6

26. Erhart F., Buchroithner J., Reitermaier R., Fischhuber K., Klingenbrunner S., Sloma I., Hibsh D., Kozol R., Efroni S., Ricken G., Wöhrer A., Haberler C., Hainfellner J., Krumpl G., Felzmann T., Dohnal A.M., Marosi C., Visus C. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathol. Commun. 2018; 6 (1): 135. DOI: http://doi.org/10.1186/s40478-018-0621-2

27. Lluesma S.M., Graciotti M., Chiang C.L., Kandalaft L.E. Does the Immunocompetent Status of Cancer Patients Have an Impact on Therapeutic DC Vaccination Strategies. Vaccines. 2018; 6 (4): 79. DOI: http://doi.org/10.3390/vaccines6040079

28. Leontovich A.A., Dronca R.S., Suman V.J., Ashdown M.L., Nevala W.K., Thompson M.A., Robinson A., Kottschade L.A., Kaur J.S., McWilliams R.R., Ivanov L.V., Croghan G.A., Markovic S.N. Fluctuation of systemic immunity in melanoma and implications for timing of therapy. Front. Biosci. (Elite Ed). 2012; 4 (3): 958–75. DOI: http://doi.org/10.2741/E433

29. Agu R.U., Ugwoke M.I., Armand M., Kinget R., Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2001; 2 (4): 198–209. DOI: http://doi.org/10.1186/rr58

30. Bocci V., Pessina G.P., Pacini A., Paulesu L., Muscettola M., Mogensen K.E. Pulmonary catabolism of interferons: alveolar absorption of 125I-labeled human interferon alpha is accompanied by partial loss of biological activity. Antiviral. Res. 1984; 4 (4): 211–20. DOI: http://doi.org/10.1016/0166-3542(84)90019-6

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»