Development and validation of a method for assessing STAT1 protein phosphorylation as a diagnostic tool for patients with defects in the conforming gene

Abstract

Introduction. Autosomal dominant STAT1-GOF (gain-of-function) pathogenic variants lead to combined immunodeficiency with CMC and autoimmune disorders. Heterozygous STAT1-GOF-mutation caused an enhanced activation with delayed STAT1 dephosphorylation. STAT1 depending cytokines affect negative regulation of gene transcription in naïve T cells, resulting in maturation of CD4+ lymphocytes into Th1 phenotype rather than Th17 phenotype. Besides that there are autosomal-dominant and autosomal-recessive variants which lead to loss of a STAT1 protein function (loss-of-function, LOF). Next-generation sequencing (NGS) has facilitated detection of novel variants. However, the biological relevance of novel mutations is often not clear and must be confirmed by immunological analysis.

The aim of this study was to develop and validate a method for assessing STAT1 protein phosphorylation.

Material and methods. The study included 17 patients with STAT1 pathogenic variants (STAT1-GOF n = 16 and STAT1-LOF n = 1), 7 patients with the variants of uncertain significance in the gene STAT1 and a cohort of healthy donors (n = 50). After the mononuclear fraction isolation, the cells were stimulated and STAT1 phosphorylation was evaluated by flow cytometry.

Results. We obtained reference values by comparing a cohort of STAT1-GOF patients with a healthy donors. The references were used to assess the variants of uncertain significance in the gene STAT1.

Conclusion. The method turned out to be sensitive and specific for detecting STAT1-GOF and STAT1-LOF genetic variants.

Keywords:STAT1; GOF; LOF; Inborn Errors of Immunity (IEI); flow cytometry; candidiasis; Th17-lymphocytes

For citation: Fadeeva M.S., Sozonova T.A., Bogdanova D.V., Alexenko M.Yu., Kulakovskaya E.A., Vedmedskaya V. A., Lodoeva O.B., Rodina Yu.A., Shcherbina A.Yu., Pershin D.E. Development and validation of a method for assessing STAT1 protein phosphorylation as a diagnostic tool for patients with defects in the conforming gene. Immunologiya. 2024; 45 (3): 329–42. DOI: https://doi.org/10.33029/1816-2134-2024-45-3-329-342 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. Authors contributed equally to the writing of the article.

References

1.Bousfiha A., Moundir A., Tangye S.G., Picard C., Jeddane L., Al-Herz W., Rundles C.C., Franco J.L., Holland S.M., Klein C., Morio T., Oksenhendler E., Puel A., Puck J., Seppänen M.R.J., Somech R., Su H.C., Sullivan K.E., Torgerson T.R., Meyts I. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol. 2022; 42 (7): 1508–20. DOI: http://doi.org/10.1007/s10875-022-01352-z

2.Laberko A.L., Starichkova Yu.V., Khismatullina R.D., Persiantseva M.I., Maschan M.A., Balashov D.N., Rumyantsev A.G. Optimization of hematopoietic stem cell transplantation planning using medical information system in children with primary immunodeficiencies. Immunologiya. 2021; 42 (1): 49–59. DOI: 10.33029/0206-4952-2021-42-1-49-59 (in Russian)

3. Okada S., Asano T., Moriya K., Boisson-Dupuis S., Kobayashi M., Casanova J.L., Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol. 2020; 40 (8): 1065–81. DOI: http://doi.org/10.1007/s10875-020-00847-x

4.Boehmer D.F.R., Koehler L.M., Magg T., Metzger P., Rohlfs M., Ahlfeld J., Rack-Hoch A., Reiter K., Albert M.H., Endres S., Rothenfusser S., Klein C., Koenig L.M., Hauck F. A. Novel Complete Autosomal-Recessive STAT1 LOF Variant Causes Immunodeficiency with Hemophagocytic Lymphohistiocytosis-Like Hyperinflammation. J Allergy Clin Immunol Pract. 2020; 8 (9): 3102–11. DOI: http://doi.org/10.1016/j.jaip.2020.06.034

5.Lorenzini T., Dotta L., Giacomelli M., Vairo D., Badolato R. STAT mutations as program switchers: turning primary immunodeficiencies into autoimmune diseases. J Leukoc Biol. 2017; 101 (1): 29–38. DOI: http://doi.org/10.1189/jlb.5RI0516-237RR

6.Boisson-Dupuis S., Kong X.F., Okada S., Cypowyj S., Puel A., Abel L., Casanova J.L. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012; 24 (4): 364–78. DOI: http://doi.org/10.1016/j.coi.2012.04.011

7.Asano T., Utsumi T., Kagawa R., Karakawa S., Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol. 2023; 212 (2): 96–106. DOI: http://doi.org/10.1093/cei/uxac106

8.Liu L., Okada S., Kong X.F., Kreins A.Y., Cypowyj S., Abhyankar A., Toubiana J., Itan Y., Audry M., Nitschke P., Masson C., Toth B., Flatot J., Migaud M, Chrabieh M, Kochetkov T., Bolze A., Borghesi A., Toulon A., Hiller J., Eyerich S., Eyerich K, Gulácsy V., Chernyshova L., Chernyshov V., Bondarenko A., Grimaldo R.M., Blancas-Galicia L., Beas I.M., Roesler J., Magdorf K., Engelhard D., Thumerelle C., Burgel P.R., Hoernes M., Drexel B., Seger R., Kusuma T., Jansson A.F., Sawalle-Belohradsky J., Belohradsky B., Jouanguy E., Bustamante J., Bué M., Karin N., Wildbaum G., Bodemer C., Lortholary O., Fischer A., Blanche S., Al-Muhsen S., Reichenbach J., Kobayashi M., Rosales F.E., Lozano C.T., Kilic S.S., Oleastro M., Etzioni A., Traidl-Hoffmann C., Renner E.D., Abel L., Picard C., Maródi L., Boisson-Dupuis S., Puel A., Casanova J.L. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011; 208 (8): 1635–48. DOI: http://doi.org/10.1084/jem.20110958

9.Zimmerman O., Olbrich P., Freeman A.F., Rosen L.B., Uzel G., Zerbe C.S., Rosenzweig S.D., Kuehn H.S., Holmes K.L., Stephany D., Ding L., Sampaio E.P., Hsu A.P., Holland S.M. STAT1 Gain-of-Function Mutations Cause High Total STAT1 Levels With Normal Dephosphorylation. Front Immunol. 2019; 10: 1433. DOI: http://doi.org/10.3389/fimmu.2019.01433

10.Erdős M., Jakobicz E., Soltész B., Tóth B., Bata-Csörgő Z., Maródi L. Recurrent, Severe Aphthous Stomatitis and Mucosal Ulcers as Primary Manifestations of a Novel STAT1 Gain-of-Function Mutation. Front Immunol. 2020; 11: 967. DOI: http://doi.org/10.3389/fimmu.2020.00967

11.Toubiana J., Okada S, Hiller J., Oleastro M., Lagos Gomez M., Aldave Becerra J.C., Ouachée-Chardin M., Fouyssac F., Girisha K.M., Etzioni A., Van Montfrans J., Camcioglu Y., Kerns L.A., Belohradsky B., Blanche S., Bousfiha A., Rodriguez-Gallego C., Meyts I., Kisand K., Reichenbach J., Renner E.D., Rosenzweig S., Grimbacher B., van de Veerdonk F.L., Traidl-Hoffmann C., Picard C., Marodi L., Morio T., Kobayashi M., Lilic D., Milner J.D., Holland S., Casanova J.L., Puel A. International STAT1 Gain-of-Function Study Group. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016; 127 (25): 3154–64. DOI: http://doi.org/10.1182/blood-2015-11-679902

12.Dhalla F., Fox H., Davenport E.E., Sadler R., Anzilotti C., van Schouwenburg P.A., Ferry B., Chapel H., Knight J.C., Patel S.Y. Chronic mucocutaneous candidiasis: characterization of a family with STAT-1 gain-of-function and development of an ex-vivo assay for Th17 deficiency of diagnostic utility. Clin Exp Immunol. 2016; 184 (2): 216–27. DOI: http://doi.org/10.1111/cei.12746

13.Depner M., Fuchs S., Raabe J., Frede N., Glocker C., Doffinger R., Gkrania-Klotsas E., Kumararatne D., Atkinson T.P., Schroeder H.W. Jr., Niehues T., Dückers G., Stray-Pedersen A., Baumann U., Schmidt R., Franco J.L., Orrego J., Ben-Shoshan M., McCusker C., Jacob C.M., Carneiro-Sampaio M., Devlin L.A., Edgar J.D., Henderson P., Russell R.K., Skytte A.B., Seneviratne S.L., Wanders J., Stauss H., Meyts I., Moens L., Jesenak M., Kobbe R., Borte S., Borte M., Wright D.A., Hagin D., Torgerson T.R., Grimbacher B. The Extended Clinical Phenotype of 26 Patients with Chronic Mucocutaneous Candidiasis due to Gain-of-Function Mutations in STAT1. J Clin Immunol. 2016; 36 (1): 73–84. DOI: http://doi.org/10.1007/s10875-015-0214-9

14.Maddur M.S., Miossec P., Kaveri S.V., Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012; 181n (1): 8–18. DOI: http://doi.org/10.1016/j.ajpath.2012.03.044

15.Bystrom J., Clanchy F.I.L., Taher T.E., Al-Bogami M., Ong V.H., Abraham D.J., Williams R.O., Mageed R.A. Functional and phenotypic heterogeneity of Th17 cells in health and disease. Eur J Clin Invest. 2019; 49 (1): e13032. DOI: http://doi.org/10.1111/eci.13032

16.Ng W.F., von Delwig A., Carmichael A.J., Arkwright P.D., Abinun M., Cant A.J., Jolles S., Lilic D. Impaired T(H)17 responses in patients with chronic mucocutaneous candidiasis with and without autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Allergy Clin Immunol. 2010; 126 (5): 1006–15. DOI: http://doi.org/10.1016/j.jaci.2010.08.027

17.Bitar M., Boldt A., Binder S., Borte M., Kentouche K., Borte S., Sack U. Flow cytometric measurement of STAT1 and STAT3 phosphorylation in CD4+ and CD8+ T cells-clinical applications in primary immunodeficiency diagnostics. J Allergy Clin Immunol. 2017; 140 (5): 1439–41. DOI: http://doi.org/10.1016/j.jaci.2017.05.017

18.Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., Gauthier L.D., Brand H., Solomonson M., Watts N.A., Rhodes D., Singer-Berk M., England E.M., Seaby E.G., Kosmicki J.A., Walters R.K., Tashman K., Farjoun Y., Banks E., Poterba T., Wang A., Seed C., Whiffin N., Chong J.X., Samocha K.E., Pierce-Hoffman E., Zappala Z., O’Donnell-Luria A.H., Minikel E.V., Weisburd B., Lek M., Ware J.S., Vittal C., Armean I.M., Bergelson L., Cibulskis K., Connolly K.M., Covarrubias M., Donnelly S., Ferriera S., Gabriel S., Gentry J., Gupta N., Jeandet T., Kaplan D., Llanwarne C., Munshi R., Novod S., Petrillo N., Roazen D., Ruano-Rubio V., Saltzman A., Schleicher M., Soto J., Tibbetts K., Tolonen C., Wade G., Talkowski M.E.; Genome Aggregation Database Consortium; Neale B.M., Daly M.J., MacArthur D.G. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020; 581 (7809): 434–43. DOI: http://doi.org/10.1038/s41586-020-2308-7

19Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014; 46 (3): 310–5. DOI: http://doi.org/10.1038/ng.2892

20Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7 (4): 248–9. DOI: http://doi.org/10.1038/nmeth0410-248

21Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11 (5): 863–74. DOI: http://doi.org/10.1101/gr.176601

22Choi Y., Sims G.E., Murphy S., Miller J.R., Chan A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012; 7 (10): e46688. DOI: http://doi.org/10.1371/journal.pone.0046688

23Jaganathan K., Kyriazopoulou Panagiotopoulou S., McRae J.F., Darbandi S.F., Knowles D., Li Y.I., Kosmicki J.A., Arbelaez J., Cui W., Schwartz G.B., Chow E.D., Kanterakis E., Gao H., Kia A., Batzoglou S., Sanders S.J., Farh K.K. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019; 176 (3): 535-48.e24. DOI: http://doi.org/10.1016/j.cell.2018.12.015

24. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17 (5): 405–24. DOI: http://doi.org/10.1038/gim.2015.30

25.Ryzhkova O.P., Kardymon O.L. Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Rebrikov D.V., Savostianov K.V., Glotov A.S., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Guidelines for the interpretation of massive parallel sequencing variants (MPS). Medical genetics. 2017; 16 (7): 4–17. DOI: http://doi.org/10.25557/2073-7998.2019.02.3-23 (in Russian)

26.Sampaio E.P., Hsu A.P., Pechacek J., Bax H.I., Dias D.L., Paulson M.L., Chandrasekaran P., Rosen L.B., Carvalho D.S., Ding L., Vinh D.C., Browne S.K., Datta S., Milner J.D., Kuhns D.B., Long Priel D.A., Sadat M.A., Shiloh M., De Marco B., Alvares M., Gillman J.W., Ramarathnam V., de la Morena M., Bezrodnik L., Moreira I., Uzel G., Johnson D, Spalding C., Zerbe C.S., Wiley H., Greenberg D.E., Hoover S.E., Rosenzweig S.D., Galgiani J.N., Holland S.M. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol. 2013; 131 (6): 1624–34. DOI: http://doi.org/10.1016/j.jaci.2013.01.052

27. Takezaki S., Yamada M., Kato M., Park M.J., Maruyama K., Yamazaki Y., Chida N., Ohara O., Kobayashi I., Ariga T. Chronic mucocutaneous candidiasis caused by a gain-of-function mutation in the STAT1 DNA-binding domain. J Immunol. 2012; 189 (3): 1521–6. DOI: http://doi.org/10.4049/jimmunol.1200926

28. Yamazaki Y., Yamada M., Kawai T., Morio T., Onodera M., Ueki M., Watanabe N., Takada H., Takezaki S., Chida N., Kobayashi I., Ariga T. Two novel gain-of-function mutations of STAT1 responsible for chronic mucocutaneous candidiasis disease: impaired production of IL-17A and IL-22, and the presence of anti-IL-17F autoantibody. J Immunol. 2014; 193 (10): 4880–7. DOI: http://doi.org/10.4049/jimmunol.1401467

29. Korn T., Bettelli E., Oukka M., Kuchroo V.K. IL-17 and Th17 Cells. Annu Rev Immunol. 2009; 27: 485–517. DOI: http://doi.org/10.1146/annurev.immunol.021908.132710

30. Van De Veerdonk F.L., Plantinga T.S., Hoischen A., Smeekens S.P., Joosten L.A., Gilissen C., Arts P., Rosentul D.C., Carmichael A.J., Smits-van der Graaf C.A., Kullberg B.J., van der Meer J.W., Lilic D., Veltman J.A., Netea M.G. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011; 365 (1): 54–61. DOI: http://doi.org/10.1056/NEJMoa1100102

31. Kim H.S., Lee M.S. STAT1 as a key modulator of cell death. Cellular Signalling. 2007; 19 (3): 454–65. DOI: http://doi.org/10.1016/j.cellsig.2006.09.003

32.  Rumyantsev A.G., Demina O.M. Molecular pathways of JAK in the pathogenesis of inflammation in acne. Immunologiya. 2021; 42 (1): 38–48. DOI: http://doi.org/10.33029/0206-4952-2021-42-1-38-48 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»