Polymorphic loci ACE1 I/D and ACE2 G8790A in COVID-19 Russian patients of the Chelyabinsk region

Abstract

Introduction. The outbreak of coronavirus infection, which has the nature of a pandemic, has not been completed to this day, therefore, research aimed at finding new ways and methods for predicting and treating COVID-19 is becoming relevant.

The purpose of the work is to determine allelic variants of the ACE1 and ACE2 genes, as well as their combinations, in Russian residents of the Chelyabinsk region who having been suffered with bilateral COVID-19 pneumonia.

Material and methods. ACE1 I/D and ACE2 G8790A were determined by Real-Time PCR based on the melting temperature of allele-specific probes bearing a fluorescent label. Analysis of the distribution of markers was carried out taking into account gender, because ACE2 genes are located on the X chromosome.

Results. The ACE2(8790)*GA genotype was significantly less common in sick women compared to the group of comparison. In female patients, the ACE2(8790)*GG genotype and the ACE1*DD/ACE2*G combination were statistically significantly more common than in the control group, associated with decreased ACE2 expression and increased ACE1 expression. In hemizygous men, on the contrary, the ACE2(8790)*A allele and the ACE1*ID/ACE2*A combination associated with higher ACE2 production were more common.

Conclusion. Predisposition factors for COVID-19 of the ACE1–2 system differ in men and women.

Keywords: gene polymorphism; ACE1; ACE2; SARS-CoV-2; COVID-19

For citation: Belyaeva S.V., Vavilov M.N., Evdokimov AV., Suslova T.A., Kofiadi I.A. Polymorphic loci ACE1 I/D and ACE2 G8790A in COVID-19 Russian patients of the Chelyabinsk region. Immunologiya. 2024; 45 (4): 427–34. DOI: https://doi.org/10.33029/1816-2134-2024-45-4-427-434 (in Russian)

Funding. The study was funded by the Russian Foundation for Basic Research project number 20-44-740004 «Genetic factors determining susceptibility to coronavirus infection (COVID-19) in the Russian population of the Chelyabinsk region».

Conflict of interests. The authors declare no conflict of interests.

Authors’ contributions. Conception and study design – Suslova T.A., Kofiadi I.A.; collection and processing of material – Belyaeva S.V., Vavilov M.N., Evdokimov A.V., statistical analysis – Belyaeva S.V., Evdokimov A.V.; writing the text – Belyaeva S.V., editing – Suslova T.A., Kofiadi I.A., Vavilov M.N.

References

1. Gusev E., Sarapultsev A., Solomatina L., Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci. 2022; 23 (3): 1716. DOI: https://doi.org/10.3390/ijms23031716

2. Khaitov R.M., Skvortsova V.I., Khaitov M.R. Biomedical safety: immunogenetics and coronavirus infection. Moscow: GEOTAR-Media, 2022. 352 p. ISBN: 978-5-9704-7382-5. (in Russian)

3. Boldyreva M.N. SARS-CoV-2 virus and other epidemic coronaviruses: pathogenetic and genetic factors for the development of infections. Immunologiya. 2019; 41 (3): 197–205. DOI: https://doi.org/10.33029/0206-4952-2020-41-3-197-205 (in Russian)

4. Gudima G., Kofiadi I., Shilovskiy I., Kudlay D., Khaitov M. Antiviral therapy of COVID-19. Int J Mol Sci. 2023; 24 (10): 8867. DOI: https://doi.org/10.3390/ijms24108867

5. WHO on coronavirus (COVID-19): dashboard // World Health Organization. URL: https://COVID19.who.int

6. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–80. DOI: https://doi.org/10.1016/j.cell.2020.02.052

7. Sriram K., Insel P.A. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol. 2020; 177 (21): 4825–44. DOI: https://doi.org/10.1111/bph.15082

8. Alimoradi N., Sharqi M., Firouzabadi D., et al. SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virol J. 2022; 19 (1): 1–9. DOI: https://doi.org/10.1186/s12985-022-01782-6

9. Shpakov A.O. Angiotensin-converting enzyme type 2 as a molecular mediator for cell infection by SARS-CoV and SARS-CoV-2 viruses. Russian Physiologic Journal im. I.M. Sechenova. 2020; 106 (7): 795–810. DOI: https://doi.org/10.31857/S0869813920060138 (in Russian)

10. Sahu S., Patil C.R., Kumar S., Apparsundaram S., Goyal R.K. Role of ACE2-Ang (1–7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem. 2022; 477 (1): 225–40. DOI: https://doi.org/10.1007/s11010-021-04275-2

11. Cao Y., Li L., Feng Z., Wan S., Huang P., Sun X., Wen F., Huang X., Ning G., Wang W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020; 6 (1): 4–7. DOI: https://doi.org/10.1038/s41421-020-0147-1

12. Jacobs M., Lahousse L., Van Eeckhoutte H.P., Wijnant S.R.A., Delanghe J.R., Brusselle G.G., Bracke K.R. Effect of ACE1 polymorphism rs1799752 on protein levels of ACE2, the SARS-CoV-2 entry receptor, in alveolar lung epithelium. ERJ Open Res. 2021; 7 (2): 00940–2020. DOI: https://doi.org/10.1183/23120541.00940-2020

13. Saad H., Jabotian K., Sakr C., Mahfouz R., Akl I.B., Zgheib N.K. The Role of Angiotensin Converting Enzyme 1 Insertion/Deletion Genetic Polymorphism in the Risk and Severity of COVID-19 Infection. Front Med. 2021; 8: 1–13. DOI: https://doi.org/10.3389/fmed.2021.798571

14. Gubernatorova E., Gorshkova E., Polinova A., Drutskaya M. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020; 53: 13–24. DOI: https://doi.org/10.1016/j.cytogfr.2020.05.009

15. Gemmati D., Bramanti B., Serino M.L., Secchiero P., Zauli G., Tisato V. COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double x-chromosome in females be protective against SARS-COV-2 compared to the single x-chromosome in males? Int J Mol Sci. 2020; 21 (10): 1–23. DOI: https://doi.org/10.3390/ijms21103474

16. Karakas Celik S., Cakmak Genc G., Piskin N., Açikgöz B., Altinsoy B., İşsiz B.K., Ahmet Dursun A. Polymorphisms of ACE (I/D) and ACE2 receptor gene (Rs2106809, Rs2285666) are not related to the clinical course of COVID-19: A case study. J Med Virol. 2021; 93 (10): 5947–52. DOI: https://doi.org/10.1002/jmv.27160

17. Interim guidelines «Prevention, diagnosis and treatment of novel coronavirus infection (COVID-19)». Version 18 (26.10.2023)

18. Abramov D.D., Kadochnikova V.V., Yakimova E.G., Belousova M.V., Maerle A.V., Sergeev I.V. Kozlov I.B. , Donnikov A.E. Kofiadi I.A., Trofimov D.Y. Frequency of mutations associated with the development of hereditary hemochromatosis type I, Wilson-Conovalov disease and familial Mediterranean fever, and features of their distribution in the Russian population. Genetics. 2021; 57 (1): 83–9. DOI: https://doi.org/10.31857/S0016675821010021 (in Russian)

19. Internet portal Medical Statistics. URL: https://medstatistic.ru

20. Sole X., Elisabet G., Valls J., Iniesta R., Moreno V. SNPStats: a web tool for the analysis of association studies. 2006: 1928–9. URL: https://www.snpstats.net/snpstats/

21. Velavan T.P., Pallerla S.R., Rüter J., Augustin Y., Kremsner P.G., Krishna S., Meyer C.G. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine. 2021; 72. DOI: https://doi.org/10.1016/j.ebiom.2021.103629

22. Jafarpour R., Pashangzadeh S., Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract. 2021; 228: 153647. DOI: https://doi.org/10.1016/j.prp.2021.153647

23. Dai S., Ding M., Liang N., Zhuo Li Z., Daqing Li D., Lianyue Guan L., Liu H. Associations of ACE I/D polymorphism with the levels of ACE, kallikrein, angiotensin II and interleukin-6 in STEMI patients. Sci Rep. 2019; 9 (1): 1–8. DOI: https://doi.org/10.1038/s41598-019-56263-8

24. Möhlendick B., Schönfelder K., Breuckmann K., Elsner C., Babel N., Balfanz P., Dahl E., Dreher M., Fistera D., Herbstreit F., Hölzer B., Koch M., Kohnle M., Marx N., Risse J., Schmidt K., Skrzypczyk S., Sutharsan S., Taube C., Westhoff T.H., Jöckel K-H., Dittmer U., Siffert W., Kribben A. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharmacogenet Genomics. 2021; 31 (8): 165–71. DOI: https://doi.org/10.1097/FPC.0000000000000436

25. Shatunova P.O., Bykov A.S., Svitich O.A., Zverev V.V. Angiotensin-converting enzyme approaches to pathogenetic therapy of Сovid-19. Journal of microbiology, epidemiology and immunobiology. 2020; 97 (4): 339–45. DOI: https://doi.org/10.36233/0372-9311-2020-97-4-6 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»