Experimental model of ligands to immune checkpoint receptor interaction on the example of PD1 and PD-L1

Abstract

Introduction. Blockade of immune checkpoint receptors (immune checkpoint blockade, ICB) is one of the effective approaches of modern immunotherapy for patients with malignant neoplasms. Clinicians use blocking antibodies to the PD1, PD-L1 and LAG3 receptor proteins exposed on various types of cells, including T-, NK-, B-cells, as well as myeloid cells of the tumor microenvironment and malignant cells. Extensive experience with ICB has shown significant differences in the clinical effectiveness of different checkpoint blocking drugs and their combinations. The need of development of a wide range of new drugs for ICB has become obvious. In turn, the development of new checkpoint blockers requires convenient and efficient experimental models suitable for the screening of existing and newly developed drugs.

Aim. This paper is devoted to the development and detailed study of two experimental models for the detection and characterization of new checkpoint blockers.

Material and methods. To analyze the blockade of the PD1 → PD-L1 signaling axis, transduced HEK293-PD1 cells that stably express the PD1 receptor protein on their surface were used. One of two experimental models developed examines the inhibition of the interaction of soluble recombinant biotin-labeled PD-L1-Fc protein with HEK293-PD1 cells. In a second experimental model, we analyze the inhibition of interaction of a fluorochrome-labeled anti-PD1 antibody with HEK293-PD1 cells. The labeled ligands to cell binding was studied by flow cytometry. Inhibition of binding was assessed according to changes in the fluorescence intensity of labeled cells.

Results. In the developed experimental models, the blocking properties of therapeutic antibodies to PD1 and PD-L1, as well as soluble recombinant PD-L1-Fc and PD1-Fc proteins were studied. The proposed experimental models shown to be highly sensitive, detecting not only the blocking properties of any substance with respect to the PD-L1-to-PD1 interaction, but also determining the specific activity of PD-L1 and PD1 blockers with half-maximal inhibition constant (K50) in the range of nanomolar concentrations of the test substance. It is claimed that the proposed approach can be used to create experimental models with any cellular receptors as molecular targets of inhibition.

Keywords: PD1-positive cell line; soluble PD1 and PD-L1; antibody; inhibition; cytometry

For citation: Vasileva T.V., Ivanov S.V., Ushakova E.I., Al Khudhur S.А., Lebedeva E.S., Pichugin A.V., Ataullakhanov R.I. Experimental model of ligands to immune checkpoint receptor interaction on the example of PD1 and PD-L1. Immunologiya. 2024; 45 (4): 473–85. DOI: https://doi.org/10.33029/1816-2134-2024-45-4-473-485 (in Russian)

Funding. The study was supported by State assignment for 2024-2025 (agreement No. 388-03-224-156 from 19.02.2024 with Federal Medical-Biological Agency). Open publication of the research results is allowed.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The idea of the study – Ataullakhanov R.I.; design of experiments – Ataullakhanov R.I., Pichugin A.V.; obtaining the HEK293-PD1 cell line and recombinant proteins PD1-Fc and PD-L1-Fc – Ivanov S.V.; conducting experiments in cell cultures – Vasilyeva T.V.; cell cytometry – Vasilyeva T.V., Pichugin A.V.; statistical processing of results – Vasilyeva T.V.; analysis of results – Ataullakhanov R.I., Pichugin A.V., Lebedeva E.S., Vasilyeva T.V.; concept of the article – Ataullakhanov R.I.; writing the article – Ataullakhanov R.I., Lebedeva E.S., Vasilyeva T.V.; technical design of the article – Ushakova E.I., Al Khudur S.A.

References

1. Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11 (11): 3887–95. DOI: https://doi.org/10.1002/j.1460-2075.1992.tb05481.x

2. Blank C., Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007; 56 (5): 739–45. DOI: https://doi.org/10.1007/s00262-006-0272-1

3. Chen R.Y., Zhu Y., Shen Y.Y., Xu Q.Y., Tang H.Y., Cui N.X., Jiang L., Dai X.M., Chen W.Q., Lin Q., Li X.Z. The role of PD-1 signaling in health and immune-related diseases. Front Immunol. 2023;14: 1163633. DOI: https://doi.org/10.3389/fimmu.2023.1163633

4. Dong H., Strome S.E., Salomao D.R., Tamura H., Hirano F., Flies D.B., Roche P.C., Lu J., Zhu G., Tamada K., Lennon V.A., Celis E., Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002; 8 (8): 793–800. DOI: https://doi.org/10.1038/nm730

5. Butte M.J., Keir M.E., Phamduy T.B., Sharpe A.H., Freeman G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007; 27 (1): 111–22. DOI: https://doi.org/10.1016/j.immuni.2007.05.016

6. Zou W., Wolchok J.D., Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016; 8: (328): 328rv4. DOI: https://doi.org/10.1126/scitranslmed.aad7118

7. Topalian S.L., Taube J.M., Anders R.A., Pardoll D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016; 16 (5): 275–87. DOI: https://doi.org/10.1038/nrc.2016.36

8. Huang A.C., Postow M.A., Orlowski R.J., Mick R., Bengsch B., Manne S., Xu W., Harmon S., Giles J.R., Wenz B., Adamow M., Kuk D., Panageas K.S., Carrera C., Wong P., Quagliarello F., Wubbenhorst B., D’Andrea K., Pauken K.E., Herati R.S., Staupe R.P., Schenkel J.M., McGettigan S., Kothari S., George S.M., Vonderheide R.H., Amaravadi R.K., Karakousis G.C., Schuchter L.M., Xu X., Nathanson K.L., Wolchok J.D., Gangadhar T.C., Wherry E.J. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017; 545 (7652): 60–5. DOI: https://doi.org/10.1038/nature22079

9. Sun Q., Hong Z., Zhang C., Wang L., Han Z., Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther. 2023; 8 (1): 320. DOI: https://doi.org/10.1038/s41392-023-01522-4

10. Kornepati A.V.R., Vadlamudi R.K., Curiel T.J. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer. 2022; 22 (3): 174–89. DOI: https://doi.org/10.1038/s41568-021-00431-4

11. Grinko E.K., Donetskova A.D. The main approaches for monoclonal antibodies in cancer immunotherapy. Immunologiya. 2024; 45 (3): 355–66. DOI: https://doi.org/10.33029/1816-2134-2024-45-3-355–366 (in Russian)

12. Chertkova A.I., Kadagidze Z.G., Zabotina T.N., Hulamhanova M.M., Kushlinskiy N.E. CTLA-4, CTLA-4, PD-1/PD-L1 Negative regulators of T-cell immunity in the therapy of ovarian cancer. Oncogynecology. 2019; 2: 4–15. eLIBRARY ID: 39113302. (in Russian)

13. Kadagidze Z.G., Chertkova A.I. New approaches to improve efficiency antitumor immune response. Immunologiya. 2015; 36 (1): 66–70. DOI: https://doi.org/10.18027/2224-5057-2015-1-24-30 (in Russian)

14.Kushlinskii N.E., Fridman M.V., Morozov A.A., Chertkova A.I., Gershtein E.S., Kadagidze Z.G. PD-1-path: biological significance, clinical application, and existing problems. Molecular Medicine. 2019; (1): 40–2. DOI: https://doi.org/10.29296/24999490-2019-01-01 (in Russian)

15.Wolchok J.D., Rollin L., Larkin J. Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017; 377 (25): 2503–04. DOI: https://doi.org/10.1056/NEJMc1714339

16.Wolchok J.D., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., Ferrucci P.F., Smylie M., Butler M.O., Hill A., Márquez-Rodas I., Haanen J.B.A.G., Guidoboni M., Maio M., Schöffski P., Carlino M.S., Lebbé C., McArthur G., Ascierto P.A., Daniels G.A., Long G.V., Bas T., Ritchings C., Larkin J., Hodi F.S. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J Clin Oncol. 2022; 40 (2): 127–37. DOI: https://doi.org/10.1200/JCO.21.02229

17.Borgeaud M., Sandoval J., Obeid M., Banna G., Michielin O., Addeo A., Friedlaender A. Novel targets for immune-checkpoint inhibition in cancer. Cancer Treat Rev. 2023; 120: 102614. DOI: https://doi.org/10.1016/j.ctrv.2023.102614

18.Fukumoto Y., Obata Y., Ishibashi K., Tamura N., Kikuchi I., Aoyama K., Hattori Y., Tsuda K., Nakayama Y., Yamaguchi N. Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology. 2010; 62 (1): 73–82. DOI: https://doi.org/10.1007/s10616-010-9259-z

19. Longo P.A., Kavran J.M., Kim M.S., Leahy D.J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013; 529: 227–40. DOI: https://doi.org/10.1016/B978-0-12-418687-3.00018-5

20.Krammer P.H., Arnold R., Lavrik I.N. Life and death in peripheral T cells. Nat Rev Immunol. 2007; 7 (7): 532–42. DOI: https://doi.org/10.1038/nri2115

21.D’Cruz L.M., Rubinstein M.P., Goldrath A.W. Surviving the crash: transitioning from effector to memory CD8+ T cell. Semin Immunol. 2009; 21 (2): 92–8. DOI: https://doi.org/10.1016/j.smim.2009.02.002

22.McKinstry K.K., Strutt T.M., Swain S.L. Regulation of CD4+ T-cell contraction during pathogen challenge. Immunol Rev. 2010; 236: 110–24. DOI: https://doi.org/10.1111/j.1600-065X.2010.00921.x

23.Qin S., Xu L., Yi M., Yu S., Wu K., Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019; 18 (1): 155. DOI: https://doi.org/10.1186/s12943-019-1091-2

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»