Quantitative characterization of TUBB3 expression parameters in the tissue of ovarian cancer

Abstract

Introduction. The expansion of the spectrum of molecular prognostic and predictive markers of tumors is a modern trend aimed at increasing the effectiveness of drug therapy for tumors of various origins, including ovarian cancer, the results of which remain unsatisfactory. In this regard, the cytoskeleton protein TUBB3, which is expressed in epithelial tumors, has significant potential. Basic research has proven that TUBB3 overexpression increases the metastatic potential of tumor cells and induces resistance to a wide range of drugs. However, in translational studies with a semi-quantitative analysis of TUBB3 expression, estimates of the contribution of this protein to the aggressiveness of ovarian cancer and the effectiveness of chemotherapy are ambiguous.

The aim of the study was a quantitative assessment of TUBB3 expression parameters in ovarian cancer tissue and determination of the correlation of the identified parameters with the clinical characteristics of the neoplasm.

Material and methods. Surgical samples of ovarian cancer tissue were examined (n = 51). Primary monoclonal antibodies to TUBB3 (clone EP1569Y, Abcam, England) and secondary antibodies conjugated with DyLight650 dye (ab98510, Abcam, England) were used. Fluorescence was measured using a Navios flow cytometer (Beckman Coulter, USA). The number of stained cells was determined in the FlowJo 10.0.8 program (USA) by the Kolmogorov–Smirnov method. Three indicators of TUBB3 expression were calculated: level (%), intensity (units), index (units). Statistical analysis of the normality of the distribution of TUBB3 expression indices, sample comparisons and correlation estimates were carried out in the GraphPad Prism 6.0 program (GraphPad Software, USA).

Results. In the studied sample of tumors, TUBB3 was detected in 100 % of cases with significant differences in quantitative indicators (up to 10 times) in different patients, which «coincides» with clinical data on the heterogeneity of the patient’s response to drug therapy and the overall survival time. There was a weak association between the level and intensity of TUBB3 expression and the absence of differences in indicators depending on the stage of ovarian cancer and the degree of tumor differentiation. In a comparative study in the same patients with primary and metastatic ovarian cancer (tumor cells from ascitic fluid in peritoneal carcinomatosis) The stability of the molecular phenotype has been demonstrated in less than 40 % of cases. In the remaining patients, the level of TUBB3 expression in tumor cells increased in half of the cases, decreased in half.

Conclusion. Quantitative immunofluorescence analysis of TUBB3 expression in ovarian cancer tissue revealed this protein in 100 % of cases with a median TUBB3 expression level of 55 % and pronounced heterogeneity of indicators in different patients. There were no differences in the level, intensity and expression index of TUBB3 depending on the stage of the disease and the degree of differentiation of the tumor. Multidirectional changes in the expression level of TUBB3 were noted in the cells of metastatic ovarian cancer compared with the primary tumor of the same patients. The generated database will allow for an accurate analysis of the predictive significance of TUBB3 expression in tumors and to determine quantitative indicators that contribute to drug resistance.

Keywords: ovarian cancer; TUBB3; tumor-associated marker

For citation. Bogush T.A., Osipova A.A., Lee А., Bogush Е.А., Grishanina A.N., Ravcheeva A.B., Kosorukov V.S. Quantitative characterization of TUBB3 expression parameters in the tissue of ovarian cancer. Immunologiya. 2024; 45 (4): 495–504. DOI: https://doi.org/10.33029/1816-2134-2024-45-4-495-504 (in Russian)

Funding. The research was carried out with the support of the Russian Science Foundation (Project No. 24-25-20080, https://rscf.ru/project/24-25-20080/).

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. All authors made an equal contribution to the study, have read the final version of the manuscript and agree with its contents.

References

1. Mamichev I.A., Bogush T.A., Bogush E.A., Terentyeva N.S., Kirsanov V.Y., Davydov M.M. Microtubule Protein βIII-Tubulin: Structure, Expression and Functions in Normal and Tumor Cells. Antibiotics and Chemotherapy. 2018; 63 (7-8): 79–90. (in Russian)

2. Person F., Wilczak W., Hube-Magg C., Burdelski C., Möller-Koop C., Simon R., Noriega M., Sauter G., Steurer S., Burdak-Rothkamm S., Jacobsen F. Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumour Biol. 2017; 39 (10): 1–11. DOI: https://doi.org/10.1177/1010428317712166

3. Panda D., Miller H.P., Banerjee A., Ludueña R.F., Wilson L. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA. 1994; 91 (24): 11358–62. DOI: https://doi.org/10.1073/pnas.91.24.11358

4. Pamula M.C., Ti S.C., Kapoor T.M. The structured core of human β tubulin confers isotype-specific polymerization properties. J Cell Biol. 2016; 213 (4): 425–33. DOI: https://doi.org/10.1083/jcb.201603050

5. Fan Y., Fan X., Yan H., Liu Z., Wang X., Yuan Q., Xie J., Lu X., Yang Y. Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis. Cell Death Dis. 2022; 13 (2): 157–67. DOI: https://doi.org/10.1038/s41419-021-04210-9

6. McCarroll J.A., Gan P.P., Erlich R.B., Liu M., Dwarte T., Sagnella S.S., Akerfeldt M.C., Yang L., Parker A.L., Chang M.H., Shum M.S., Byrne F.L., Kavallaris M. TUBB3/βIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res. 2015; 75 (2): 415–25. DOI: https://doi.org/10.1158/0008-5472.CAN-14-2740

7. Lebok P., Öztürk M., Heilenkötter U., Jaenicke F., Müller V., Paluchowski P., Geist S., Wilke C., Burandt E., Lebeau A., Wilczak W., Krech T., Simon R., Sauter G., Quaas A. High levels of class III β-tubulin expression are associated with aggressive tumor features in breast cancer. Oncol Lett. 2016; 11 (3): 1987–94. DOI: https://doi.org/10.3892/ol.2016.4206

8. Xie X., Laster K.V., Li J., Nie W., Yi Y.W., Liu K., Seong Y.S., Dong Z., Kim D.J. OSGIN1 is a novel TUBB3 regulator that promotes tumor progression and gefitinib resistance in non-small cell lung cancer. Cell Mol Life Sci. 2023; 80 (9): 272–90. DOI: https://doi.org/10.1007/s00018-023-04931-4

9. Raspaglio G., De Maria I., Filippetti F., Martinelli E., Zannoni G.F., Prislei S., Ferrandina G., Shahabi S., Scambia G., Ferlini C. HuR regulates beta-tubulin isotype expression in ovarian cancer. Cancer Res. 2010; 70 (14): 5891–900. DOI: https://doi.org/10.1158/0008-5472.CAN-09-4656

10. De Donato M., Mariani M., Petrella L., Martinelli E., Zannoni G.F., Vellone V., Ferrandina G., Shahabi S., Scambia G., Ferlini C. Class III β-tubulin and the cytoskeletal gateway for drug resistance in ovarian cancer. J Cell Physiol. 2012; 227 (3): 1034–41. DOI: https://doi.org/10.1002/jcp.22813

11. Parker A.L., Turner N., McCarroll J.A., Kavallaris M. βIII-Tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis. 2016; 37 (8): 787–98. DOI: https://doi.org/10.1093/carcin/bgw058

12. Huang J., Lan X., Wang T., Lu H., Cao M., Yan S., Cui Y., Jia D., Cai L., Xing Y. Targeting the IL-1β/EHD1/TUBB3 axis overcomes resistance to EGFR-TKI in NSCLC. Oncogene. 2020; 39 (8): 1739–55. DOI: https://doi.org/10.1038/s41388-019-1099-5

13. McCarroll J.A., Gan P.P., Liu M., Kavallaris M. betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer Res. 2010; 70 (12): 4995–5003. DOI: https://doi.org/10.1158/0008-5472.CAN-09-4487

14. Tamura D., Arao T., Nagai T., Kaneda H., Aomatsu K., Fujita Y., Matsumoto K., De Velasco M.A., Kato H., Hayashi H., Yoshida S., Kimura H., Maniwa Y., Nishio W., Sakai Y., Ohbayashi C., Kotani Y., Nishimura Y., Nishio K. Slug increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells. Cancer Med. 2013; 2 (2): 144–54. DOI: https://doi.org/10.1002/cam4.68

15. Zhuo Y., Guo Q. Down-regulated βIII-tubulin expression can reverse paclitaxel resistance in A549/taxol cells lines. Zhongguo Fei Ai Za Zhi. 2014; 17 (8): 581–7. DOI: https://doi.org/10.3779/j.issn.1009-3419.2014.08.01

16. Zhu S., Ni Y., Sun G., Wang Z., Chen J., Zhang X., Zhao J., Zhu X., Dai J., Liu Z., Liang J., Zhang H., Zhang Y., Shen P., Zeng H. Exosomal TUBB3 mRNA expression of metastatic castration-resistant prostate cancer patients: Association with patient outcome under abiraterone. Cancer Med. 2021; 10 (18): 6282–90. DOI: https://doi.org/10.1002/cam4.4168

17. Sekino Y., Han X., Kawaguchi T., Babasaki T., Goto K., Inoue S., Hayashi T., Teishima J., Shiota M., Yasui W., Matsubara A. TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. Int J Mol Sci. 2019; 20 (16): 3936–50. DOI: https://doi.org/10.3390/ijms20163936

18. Sun X., Zhang Y., Xin S., Jin L., Cao Q., Wang H., Wang K., Liu X., Tang C., Li W., Li Z., Wen X., Yang G., Guo C., Liu Z., Ye L. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci. 2024; 115 (2): 412–26. DOI: https://doi.org/10.1111/cas.16040

19. Quan P.M., Binh V.N., Ngan V.T., Trung N.T., Anh N.Q. Molecular docking studies of vinca alkaloid derivatives on tubulin. Vietnam J Chem. 2019; 57 (6): 702–6. DOI: https://doi.org/10.1002/vjch.201900087

20. Gan P.P., Pasquier E., Kavallaris M. Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res. 2007; 67 (19): 9356–63. DOI: https://doi.org/10.1158/0008-5472.CAN-07-0509

21. Karki R., Mariani M., Andreoli M., He S., Scambia G., Shahabi S., Ferlini C. βIII-Tubulin: biomarker of taxane resistance or drug target? Expert Opin Ther Targets. 2013; 17 (4): 461–72. DOI: https://doi.org/10.1517/14728222.2013.766170

22. Pernar Kovač M., Tadić V., Kralj J., Duran G.E., Stefanelli A., Stupin Polančec D., Dabelić S., Bačić N., Tomicic M.T., Heffeter P., Sikic B.I., Brozovic A. Carboplatin-induced upregulation of pan β-tubulin and class III β-tubulin is implicated in acquired resistance and cross-resistance of ovarian cancer. Cell Mol Life Sci. 2023; 80 (10): 294–312. DOI: https://doi.org/10.1007/s00018-023-04943-0

23. Vanderpuye V.D., Clemenceau J.V., Temin S., Aziz Z., Burke W.M., Cevallos N.L., Chuang L.T., Colgan T.J., Del Carmen M.G., Fujiwara K., Kohn E.C., Gonzáles Nogales J.E., Konney T.O., Mukhopadhyay A., Paudel B.D., Tóth I., Wilailak S., Ghebre R.G. Assessment of adult women with ovarian masses and treatment of epithelial ovarian cancer: ASCO resource-stratified guideline. JCO Glob Oncol. 2021; 7: 1032–66. DOI: https://doi.org/10.1200/GO.21.00085

24. Tyulyandina A.S., Kolomiets L.A., Morkhov K.Y., Nechushkina V.M., Pokataev I.A., Rumyantsev A.A. Practical recommendations for the drug treatment of ovarian cancer, primary peritoneal cancer and fallopian tube cancer. Practical recommendations of RUSSCO, Part 1. Malignant tumors. 2023; 13 (3s2): 201–15. (in Russian)

25. Su D., Smith S.M., Preti M., Schwartz P., Rutherford T.J., Menato G., Danese S., Ma S., Yu H., Katsaros D. Stathmin and tubulin expression and survival of ovarian cancer patients receiving platinum treatment with and without paclitaxel. Cancer. 2009; 115 (11): 2453–63. DOI: https://doi.org/10.1002/cncr.24282

26. Du J., Li B., Fang Y., Liu Y., Wang Y., Li J., Zhou W., Wang X. Overexpression of class III β-tubulin, Sox2, and nuclear survivin is predictive of taxane resistance in patients with stage III ovarian epithelial cancer. BMC Cancer. 2015; 15: 536–46. DOI: https://doi.org/10.1186/s12885-015-1553-x

27. Sève P., Dumontet C. Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol. 2008; 9 (2): 168–75. DOI: https://doi.org/10.1016/S1470-2045(08)70029-9

28. Zhao D., Zhang W., Li X.G., Wang X.B., Li M., Li Y.F., Tian H.M., Song P.P., Liu J., Chang Q.Y., Wu L.Y. The mRNA expression of BRCA1, ERCC1, TUBB3, PRR13 genes and their relationship with clinical chemosensitivity in primary epithelial ovarian cancer. Zhonghua Zhong Liu Za Zhi. 2012; 34 (3): 196–200. DOI: https://doi.org/10.3760/cma.j.issn.0253-3766.2012.03.008

29. Martinelli E., Fattorossi A., Battaglia A., Petrillo M., Raspaglio G., Zannoni G.F., Fanelli M., Gallo D., Scambia G. Preoperative anti-class III β-tubulin antibodies as relevant clinical biomarkers in ovarian cancer. Transl Oncol. 2018; 11 (2): 358–65. DOI: https://doi.org/10.1016/j.tranon.2018.01.016

30. Herzog T.J., Spetzler D., Xiao N., Burnett K., Maney T., Voss A., Reddy S., Burger R., Krivak T., Powell M., Friedlander M., McGuire W. Impact of molecular profiling on overall survival of patients with advanced ovarian cancer. Oncotarget. 2016; 7 (15): 19840–9. DOI: https://doi.org/10.18632/oncotarget.7835

31. Ferrandina G., Zannoni G.F., Martinelli E., Paglia A., Gallotta V., Mozzetti S., Scambia G., Ferlini C. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006; 12 (9): 2774–9. DOI: https://doi.org/10.1158/1078-0432.CCR-05-2715

32. Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: redirecting R&D in solid cancer towards metastasis? Trends Cancer. 2019; 5 (12): 755–6. DOI: https://doi.org/10.1016/j.trecan.2019.10.011

33. Solomon J., Raškova M., Rösel D., Brábek J., Gil-Henn H. Are we ready for migrastatics? Cells. 2021; 10 (8): 1845–52. DOI: https://doi.org/10.3390/cells10081845

34. Vasarri M., Barletta E., Degl’Innocenti D. Marine migrastatics: a comprehensive 2022 update. Mar Drugs. 2022; 20 (5): 273–92. DOI: https://doi.org/10.3390/md20050273

35. Bogush T.A., Basharina A.A., Bogush E.A., Grishanina A.N., Sakaeva D.M., Kirsanov V.Yu., Davydov M.M., Kosorukov V.S. Immunofluorescent Assay of De Novo Vimentin Expression in Ovarian Cancer Tissues: Surgical Specimens vs Paraffin Embedded Tissue Blocks. Moscow University Chemistry Bulletin. 2020: 75 (6): 315–9. DOI: https://doi.org/10.3103/S0027131420060036 (in Russian)

36. Bogush T.A., Basharina A.A., Eliseeva B.K., Kaliuzhny S.A., Bogush E.A., Kirsanov V.Y, Davydov M.M, Kosorukov V.S. A new approach to epithelial-mesenchymal transition diagnostics in epithelial tumors: double immunofluorescent staining and flow cytometry. Biotechniques. 2020; 69 (4): 257–63. DOI: https://doi.org/10.2144/btn-2020-0024

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»