Recommendations for creating a validation algorithm of cell lines phenotyping methods

Abstract

The study is devoted to the collection, analysis, integration and interpretation of data on approaches and design validation of cell line phenotyping techniques using flow cytometry from the works of various groups of authors over the last two decades. Based on the studied scientific data, the work presents the results in the form of an algorithm for cell line phenotyping method validation, including steps to describe the validation strategy and its implementation, obtaining and analyzing data, as well as determining acceptance criteria.

Keywords: validation; phenotyping; flow cytometry; quality control; cell lines

For citation: Pokrovsky N.S., Vodyakova M.A., Merkulov V.A., Melnikova E.V. Recommendations for creating a validation algorithm of cell lines phenotyping methods. Immunologiya. 2024; 45 (4): 505–17. DOI: https://doi.org/10.33029/1816-2134-2024-45-4-505-517 (in Russian)

Funding. The study reported in this publication was carried out as part of publicly funded research project No. 05600026-24-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting 124022200093-9). Open publication of the research results is allowed.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contributions. Writing the text, collection and processing of material – Pokrovsky N.S., Vodyakova M.A.; editing – Merkulov V.A.; the concept and design of the study – Melnikova E.V.

References

1. Pokrovsky N.S., Vodyakova M.A., Merkulov V.A., Melnikova E.V. Specific aspects and key parameters of validation for methods of phenotyping of cell lines included in cell therapy products. Immunologiya. 2024; 45 (3): 353–54. DOI: https://doi.org/10.33029/1816-2134-2024-45-3-353-354 (in Russian)

2. Trusov G.A., Chaplenko A.A., Semenova I.S., Melnikova E.V., Olefir Yu.V. Use of Flow Cytometry for Quality Evaluation of Biomedical Cell Products. Biopreparaty Profilaktika, diagnostika, lechenie. 2018; 18 (1): 16–24. DOI: https://doi.org/10.30895/2221-996X-2018-18-1-16-24 (in Russian)

3. O’Hara D.M., Xu Y., Liang Z., Reddy M.P., Wu D.Y., Litwin V. Recommendations for the validation of flow cytometric testing during drug development: II assays. J Immunol Methods. 2011; 363 (2): 120–34. DOI: https://doi.org/10.1016/j.jim.2010.09.036

4. Kim H., Shin S., Hwang S.H., Kim M., Cho Younguk, Jang S. Validation of High-sensitivity Flow Cytometry for Reliable Immune Cell Analysis in Real-world Laboratory Settings. Ann Lab Med. 2023; 43 (6): 620–4. DOI: https://doi.org/10.3343/alm.2023.43.6.620

5. Viganò M., Budelli S., Lavazza C., Montemurro T., Montelatici E., De Cesare S., Lazzari L., Orlandi A.R., Lunghi G., Giordano R. Tips and Tricks for Validation of Quality Control Analytical Methods in Good Manufacturing Practice Mesenchymal Stromal Cell Production. Stem Cells Int. 2018; 2018: 1–16. DOI: https://doi.org/10.1155/2018/3038565

6. Selliah N., Nash V., Eck S., Green C., Oldaker T., Stewart J., Vitaliti A., Litwin V. Flow Cytometry Method Validation Protocols. Curr Protoc Cytom. 2023; 3 (8): e868. DOI: https://doi.org/10.1002/cpz1.868

7. European Medicines Agency (EMA). ICH Q14 Guideline on analytical procedure development. 2023. URL: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q14-guideline-analytical-procedure-development-step-5_en.pdf

8. European Medicines Agency (EMA). ICH Topic Q2 (R2) Validation of Analytical Procedures: Text and Methodology. 2023. URL: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q2r2-guideline-validation-analytical-procedures-step-5-revision-1_en.pdf

9. CLSI. H62. Validation of Assays Performed by Flow Cytometry. 1st ed. 2021. 234 p. ISBN: 978-1-68440-128-4

10. The Ministry of Health of the Russian Federation. The State Pharmacopoeia of the Russian Federation XV edition. OFS.1.1.0012 «Validation of analytical techniques». 2023. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/1/1-1/validatsiya-analiticheskikh-metodik/ (in Russian)

11. Burel J.G., Qian Y., Lindestam Arlehamn C., Weiskopf D., Zapardiel-Gonzalo J., Taplitz R., Gilman R.H., Saito M., De Silva A.D., Vijayanand P., Scheuermann R.H., Sette A., Peters B. An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry. J Immunol. 2017; 198 (4): 1748–58. DOI: 10.4049/jimmunol.1601750

12. Dorn-Beineke A., Sack U. Quality control and validation in flow cytometry. LaboratoriumsMedizin. 2016; 40 (s1): 000010151520160016. DOI: https://doi.org/10.1515/labmed-2016-0016

13. Lee J.W., Devanarayan V., Barrett Y.C., Weiner R., Allinson J., Fountain S., Keller S., Weinryb I., Green M., Duan L., Rogers J.A., Millham R., O’Brien P.J., Sailstad J., Khan M., Ray C., Wagner J.A. Fit-for-Purpose Method Development and Validation for Successful Biomarker Measurement. Pharm Res. 2006; 23 (2): 312–28. DOI: https://doi.org/10.1007/s11095-005-9045-3

14. Tangri S., Vall H., Kaplan D., Hoffman B., Purvis N., Porwit A., Hunsberger B., Shankey T.V. Validation of cell-based fluorescence assays: Practice guidelines from the ICSH and ICCS – part III – analytical issues Cytometry B Clin Cytom. 2013; 84 (5): 291–308. DOI: https://doi.org/10.1002/cyto.b.21106

15. Wood B., Jevremovic D., Béné M.C., Yan M., Jacobs P., Litwin V. Validation of cell-based fluorescence assays: Practice guidelines from the ICSH and ICCS – part V – assay performance criteria. Cytometry B Clin Cytom. 2013; 84 (5): 315–23. DOI: https://doi.org/10.1002/cyto.b.21108

16. Lambert C., Yanikkaya D. G., Keller T., Preijers F., Psarra K., Schiemann M., Özçürümez M., Sack U. Flow Cytometric Analyses of Lymphocyte Markers in Immune Oncology: A Comprehensive Guidance for Validation Practice According to Laws and Standards. Front Immunol. 2020; 11: 2169. DOI: https://doi.org/10.3389/fimmu.2020.02169

17. Mfarrej B., Gaude J., Couquiaud J., Calmels B., Chabannon C., Lemarie C. Validation of a flow cytometry-based method to quantify viable lymphocyte subtypes in fresh and cryopreserved hematopoietic cellular products. Cytotherapy. 2021; 23 (1): 77–87. DOI: https://doi.org/10.1016/j.jcyt.2020.06.005

18. Davis B.H., Wood B., Oldaker T., Barnett D. Validation of cell-based fluorescence assays: Practice guidelines from the ICSH and ICCS – part I – rationale and aims. Cytometry B Clin Cytom. 2013; 84 (5): 282–5. DOI: https://doi.org/10.1002/cyto.b.21104

19. Davis B.H., Dasgupta A., Kussick S., Han J.Y., Estrellado A. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS – part II – preanalytical issues. Cytometry B Clin Cytom. 2013; 84 (5): 286–90. DOI: https://doi.org/10.1002/cyto.b.21105

20. Barnett D., Louzao R., Gambell P., De J., Oldaker T., Hanson C.A. Validation of cell-based fluorescence assays: Practice guidelines from the ICSH and ICCS – part IV – postanalytic considerations. Cytometry B Clin Cytom. 2013; 84 (5): 309–14. DOI: https://doi.org/10.1002/cyto.b.21107

21. Collins L.M., Dziak J.J., Li R. Design of experiments with multiple independent variables: A resource management perspective on complete and reduced factorial designs. Psychol Methods. 2009; 14 (3): 202–24. DOI: https://doi.org/10.1037/a0015826

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»