Activation of Th17-immune response in a mouse model of neutrophilic asthma

Abstract

Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the respiratory tract. The majority of patients with mild to moderate BA are well respond to corticosteroid treatment. However, there is a group of patients (up to 10% of BA cases) with severe BA which resistant to conventional corticosteroid therapy. A detailed study of this phenomenon revealed a relationship between the severity of BA, activation of Th1- and Th17-immune responses and neutrophilic type of inflammation. At the same time patients with Th2-mediated eosinophilic pulmonary inflammation respond to corticosteroids well. In order to understand the mechanisms of corticosteroid resistance we developed a model of BA in mice with a predominant neutrophilic rather than eosinophilic type of inflammation. BALB/c mice were immunized with the mixture of the ovalbumin allergen and Freund’s adjuvant, followed by aerosol challenge with the same allergen mixed with E. coli lipopolysaccharide. As a result, mice developed key manifestations of neutrophilic BA: production of allergen-specific IgE antibodies, development of bronchial hyperreactivity, remodeling of the respiratory tract and infiltration of lung tissue with neutrophils. Moreover, the development of this pathology was Th17-dependent, that corresponds to the clinical observations in human. The presented model of neutrophilic BA in mice can be used both for studying the pathogenesis of the disease, and for testing new approaches to its therapy.

Keywords:bronchial asthma; mouse model; Th17-immune response

Funding. The study was supported by the grant of the President of Russian Federation No. MD-1578.2019.4 (07515-2019-224).

Conflict of interests. The authors declare no conflict of interests.

For citation: Shilovskiy I.P, Nikolskii A.A., Kovchina V.I., Bolotova S.I., Vishniakova L.I., Sokolova A.R., Barvinskaya E.D., Khaitov M.R. Activation of Th17-immune response in a mouse model of neutrophilic asthma. Immunologiya. 2019; 40 (6): 5-15. doi: 10.24411/0206-4952-2019-16001

References

1. Bateman E.D., Hurd S.S., Barnes P.J., Bousquet J., et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2018; 51 (2): 143-178. doi: 10.1183/13993003.51387-2007.

2. Linneberg A., Dam Petersen K., Hahn-Pedersen J., Hammerby E., et al. Burden of allergic respiratory disease: a systematic review. Clin Mol Allergy. 2016; 14: 12. doi: 10.1186/s12948-016-0049-9

3. Akdis C.A., Agache I. Global Atlas of Asthma. Eur Acad Allergy Clin Immunol. 2013; 196.

4. Gudima G.O., Ilina N.I. Allergy - basic problems and practical questions. Immunologiya. 2014; 35 (1): 48-50. (in Russian)

5. Kozulina I.E., Kurbacheva O.M., Ilina N.I. Allergy today. Analysis of new epidemiological data. Rossijskij allergologicheskij zhurnal. 2014; 3: 3-10. (in Russian)

6. Bahadori K., Doyle-Waters M.M., Marra C., Lynd L., et al. Economic burden of asthma: a systematic review. BMC Pulm Med. 2009; 9 (1): 24. doi: 10.1186/1471-2466-9-24

7. Accordini S., Corsico A.G., Braggion M., Gerbase M.W., et al. The cost of persistent asthma in Europe: an international population-based study in adults. Int Arch Allergy Immunol. 2013; 160 (1): 93101. doi: 10.1159/000338998

8. Gushchin I.S. IgE-mediated hypersensitivity as a response to barrier tissue disfunction. Immunologiya. 2015; 36 (1): 45-52. (in Russian)

9. Woodruff P.G., Modrek B., Choy D.F., Jia G., et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009; 180 (5): 388-395. doi: 10.1164/rccm.200903-0392OC

10. Soldatov A.A., Avdeeva Z.I., Medunitsin N.V. Mechanisms of allergic reactions of immediate type, drugs and methods of immunotherapy. Immunologiya. 2016; 37 (1): 51-60. (in Russian)

11. Wenzel S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat Med. 2012; 18 (5): 716-725. doi: 10.1038/nm.2678

12. Moore W.C., Hastie A.T., Li X., Li H., et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol. 2014; 133 (6): 1557-1563. e5. doi: 10.1016/j.jaci.2013.10.011

13. Pelaia G., Vatrella A., Busceti M.T., Gallelli L. et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm. 2015; 2015: 879783. doi: 10.1155/2015/879783

14. Chambers E.S., Nanzer A.M., Pfeifer P.E., Richards D.F., et al. Distinct endotypes of steroid-resistant asthma characterized by IL-17A high and IFN-y high immunophenotypes: Potential benefits of calcitriol. J Allergy Clin Immunol. 2015; 136 (3): 628-637.e4. doi: 10.1016/j.jaci.2015.01.026

15. Dockrell M., Partridge M.R., Valovirta E. The limitations of severe asthma: The results of a European survey. Allergy Eur J Allergy Clin Immunol. 2007; 62 (2): 134-141. doi: 10.1111/j.1398-9995.2006.01304.x

16. Holgate S.T., Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006; 368 (9537): 780-793. doi: 10.1016/S0140-6736(06)69288-X

17. Shin Y.S., Takeda K., Gelfand E.W. Understanding asthma using animal models. Allergy, Asthma Immunol Res. 2009; 1 (1): 10-18. doi: 10.4168/aair.2009.1.1.10

18. Aun M.V., Bonamichi-Santos R., Arantes-Costa F.M., Kalil J., et al. Animal models of asthma: utility and limitations. J Asthma Allergy. 2017; 10: 293-301. doi: 10.2147/JAA.S121092

19. Mullane K., Williams M. Animal models of asthma: Reprise or reboot? Biochem Pharmacol. 2014; 87 (1): 131-139. doi: 10.1016/j.bcp.2013.06.026

20. Babakhin A.A., Shilovsky I.P., Andreev I.V., Kozmin L.D., et al. Experimental allergen-specific immunotherapy with the use of a Timpol allergovaccine as exemplified by the murine model of IgE-dependent bronchial asthma. Immunologiya. 2012; 33 (3): 134-141. (in Russian)

21. Shilovskiy I.P., Sundukova M.S., Babakhin А.А., Gaisina A.R., et al. Experimental protocol for development of adjuvant-free murine chronic model of allergic asthma. J Immunol Methods. 2019; 468 (March): 10-19. doi: 10.1016/j.jim.2019.03.002

22. Shilovskiy I.P., Babakhin A.A., Shershakova N.N., Kamyshnikov O.Y., et al. Adjuvant and adjuvant-free protocols produce similar phenotypes of allergic asthma in mice. Curr Trends Immunol. 2015; 16: 79-91.

23. Ennis D.P., Cassidy J.P., Mahon B.P. Acellular pertussis vaccine protects against exacerbation of allergic asthma due to Bordetella pertussis in a murine model. Clin Diagn Lab Immunol. 2005; 12 (3): 409-417. doi: 10.1128/CDLI.12.3.409-417.2005

24. Wenzel S.E., Schwartz L.B., Langmack E.L., Halliday J.L., et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999; 160 (3): 1001-1008. doi: 10.1164/ajrccm.160.3.9812110

25. Nakagome K., Matsushita S., Nagata M. Neutrophilic inflammation in severe asthma. International Archives of Allergy and Immunology. 2012; 158: 96-102. doi: 10.1159/000337801

26. Moore W.C., Hastie A.T., Li X., Li H., et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol. 2014; 133 (6): 1557-1563. doi: 10.1016/j.jaci.2013.10.011

27. Pichavant M., Goya S., Hamelmann E., Gelfand E.W. et al. Animal models of airway sensitization. Curr Protoc Immunol. 2007; 15 (15): 18. doi: 10.1002/0471142735.im1518s79

28. Ito K., Herbert C., Siegle J.S., Vuppusetty C., et al. Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma. Am J Respir Cell Mol Biol. 2008; 39 (5): 543-550. doi: 10.1165/rcmb.2008-00280C

29. Woolley K.L., Gibson P.G., Carty K., Wilson A.J. et al. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am J Respir Crit Care Med. 1996; 154 (1): 237-243. doi: 10.1164/ajrccm.154.1.8680686

30. Kato T., Takeda Y., Nakada T., Sendo F. Inhibition by dexa-methasone of human neutrophil apoptosis in vitro. Nat Immun. 1995; 14 (4): 198-208.

31. Bogaert P., Naessens T., de Koker S., Hennuy B., et al. Inflammatory signatures for eosinophilic vs. neutrophilic allergic pulmonary inflammation reveal critical regulatory checkpoints. Am J Physiol -Lung Cell Mol Physiol. 2011; 300 (5): 679-690. doi: 10.1152/aj-plung.00202.2010

32. Dejager L., Dendoncker K., Eggermont M., Souffriau J., et al. Neutralizing TNFa restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015; 8: 1-14. doi: 10.1038/mi.2015.12

33. Knudsen N.P.H., Olsen A., Buonsanti C., Follmann F., et al. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep. 2016; 6: 19570. doi: 10.1038/srep19570

34. Gavino A.C., Nahmod K., Bharadwaj U., Makedonas G., et al. STAT3 inhibition prevents lung inflammation, remodeling, and accumulation of Th2 and Th17 cells in a murine asthma model. Allergy Eur J Allergy Clin Immunol. 2016; 71 (12): 1684-1692. doi: 10.1111/all.12937

35. Xu L., Sun W.J., Jia A.J., Qiu L.L., et al. MBD2 regulates differentiation and function of Th17 cells in neutrophils- dominant asthma via HIF-1a. J Inflamm (United Kingdom). 2018; 15 (1): 1-12. doi: 10.1186/s12950-018-0191-x

36. An T.J., Rhee C.K., Kim J.H., Lee Y.R., et al. Effects of mac-rolide and corticosteroid in neutrophilic asthma mouse model. Tuberc Respir Dis (Seoul). 2018; 81 (1): 80-87. doi: 10.4046/trd.2017.0108

37. Tan H.T.T., Hagner S., Ruchti F., Radzikowska U., et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy Eur J Allergy Clin Immunol. 2019; 74 (2): 294-307. doi: 10.1111/all.13619

38. Babakhin A.A., Laskin A.A., Nikonova A.A., Kamishni-kov O.Yu., et al. Modelling of bronchial asthma with neutrophilic phenotype of inflammation. Immunologiya. 2017; 38 (4): 199-205. (in Russian)

39. Liu W., Liu S., Verma M., Zafar I., et al. Mechanism of TH2/TH 17-predominant and neutrophilic TH2/TH 17-low subtypes of asthma. J Allergy Clin Immunol. 2017; 139 (5): 1548-1558. doi: 10.1016/j.jaci.2016.08.032

40. Morishima Y., Ano S., Ishii Y., Ohtsuka S., et al. Th17-asso-ciated cytokines as a therapeutic target for steroid-insensitive asthma. Clin Dev Immunol. 2013; 2013: 1-9. doi: 10.1155/2013/609395

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»